Tradeoffs in Designing Accelerator Architectures for Visual Computing

Agqeel Mahesri Daniel Johnson

Neal Crago

Sanjay J. Patel

Center for Reliable and High-Performance Computing
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
{mahesri,djohns53,crago,sjp} @uiuc.edu

Abstract

Visualization, interaction, and simulation (VIS) consti-
tute a class of applications that is growing in importance.
This class includes applications such as graphics rendering,
video encoding, simulation, and computer vision. These ap-
plications are ideally suited for accelerators because of their
parallelizability and demand for high throughput. We com-
pile a benchmark suite, VISBench, to serve as a proxy for
this application class.

We use VISBench to examine some important high level
decisions for an accelerator architecture. We propose a
highly parallel base architecture. We examine the need for
synchronization and data communication. We also examine
GPU-style SIMD execution and find that a MIMD architec-
ture is usually preferable.

Given these high level choices, we use VISBench to ex-
plore the microarchitectural design space. We analyze area
versus performance tradeoffs in designing individual cores
and the memory hierarchy. We find that a design made of
small, simple cores, achieves much higher throughput than
a general purpose uniprocessor. Further, we find that a lim-
ited amount of support for ILP within each core aids overall
performance. We find that fine-grained multithreading im-
proves performance, but only up to a point. We find that
word-level (SSE-style) SIMD provides a poor performance
to area ratio. Finally, we find that sufficient memory and
cache bandwidth is essential to performance.

1. Introduction

There is a large, emerging and commercially-relevant
class of applications enabled by the significant increase
in computing density provided by accelerator architectures
such as graphics processing units, physics accelerators, and
attached co-processors such as the IBM Cell processor.
These applications span many domains, from graphics and
physics for gaming and interactive simulation, to data anal-
ysis for oil and gas exploration, scientific computing, 3D
modeling for CAD, signal processing, digital content cre-
ation, and financial analytics. Applications in these domains

benefit from architectural approaches that provide higher
performance through parallelism.

In this paper we examine architecture-level tradeoffs for
applications broadly associated with visual computing. Vi-
sual computing is a significant extension beyond standard
raster-based graphics processing. It includes myriad graph-
ics algorithms beyond classic raster-based graphics. It fur-
ther includes application areas such as video processing,
computer vision, imaging, tracking, and physics simulation.

To support our exploration, we develop an experimen-
tal benchmarking suite called VISBench (Visual, Interac-
tive, Simulation Benchmarks) to serve as an experimental
proxy for this visual computing domain. While the VIS-
Bench Suite * is a diverse workload, one major aspect is
uniformly true: each application’s execution time is domi-
nated by a parallel section of code. Visual computing and
VISBench are further described in Section 2.

We propose a highly parallel, throughput-oriented
meta-architecture for a visual computing accelerator. An
accelerator is a co-processor that allows the CPU, to off-
load and accelerate compute intensive work. Our meta-
architecture goes beyond existing multicore designs in re-
lying on parallelism for performance, and in relying on soft-
ware to manage the parallelism. Our meta-architecture is
built around a large array of simple compute cores, con-
nected by a minimal on-chip network to a shared cache and
a very high bandwidth memory system. The compute ar-
ray is managed by a high-performance controller to handle
scheduling and communication. In addition to proposing
a basic architecture, we examine high-level issues such as
synchronization and communication, and evaluate the per-
formance potential of GPU-style SIMD execution of scalar
threads. We determine that VISBench, unlike raster graph-
ics, does need support for fine-grained synchronization, but
that the implementation of such synchronization can be
made much simpler and slower than in a multicore CPU. We
determine that for some applications, SIMD execution pro-
vides a major performance benefit, but other applications’

*Qur VISBench should not be confused with NCSA VisBench, an un-
related application for analyzing remote CFD simulations

control flow divergence results in an even greater perfor-
mance loss. The meta-architecture is further described in
Section 3.

Our meta-architecture affords a wide degree of freedom
in determining the detailed architecture. To analyze the de-
sign space, we’ve developed an area model from base tech-
nology parameters that we use for assessing the costs for
various architectural choices. Using a performance model,
we estimate the throughput attained by the overall chip ar-
chitecture on VISBench applications. We explore the perfor-
mance and area tradeoffs for a number of these architecture-
level design considerations, such as core architecture (1-
wide vs 2-wide, in-order vs out-of-order), effects of word-
level SIMD, multi-threading, and cache hierarchy. The de-
sign space exploration is presented in Section 4.

Our major conclusions are as follows: There exists
enough low-hanging instruction-level parallelism to prof-
itably support dual-issue compute cores. Given the signif-
icant area overhead of word-level SIMD execution, sup-
porting these instructions is not worthwhile considering
their low frequency in most VISbench apps. 2-way multi-
threading is often worth the extra area overhead; 4-way is
not.

Clearly, like most experimental studies, our results must
be viewed in light of our assumptions; due to the wide varia-
tion in the overall design space, one can potentially arrive at
different conclusions with different assumptions. Nonethe-
less, the results in this paper serve as a starting point for
investigation of accelerator tradeoffs and relative trends are
likely to hold even with different assumptions.

2 Visual Computing

We broadly define Visual Computing as application do-
mains associated with the processing and rendering of vi-
sual information. Examples of applications in this domain
include rendering of 3D scene information, photo-realistic
scene lighting models, physical simulation, medical and sci-
entific visualization, and image and video processing. Ap-
plications of this domain represent a significant, emergent,
and commercially-relevant class of performance drivers for
consumer, professional, and high-end computing. Higher
baseline performance on such applications results in greater
functionality and value to the end user. In many cases, the
desire is to achieve interactive rates on certain applications
(for example, video games require rendering and simulation
rates of 30 frames per second and above). Due to their visual
nature, these applications tend to have considerable data-
level parallelism given that they deal with large volumes of
data that are visualized in a largely independent manner, or
have interactions that are mostly uncommon or localized.

From another perspective, one can view visual comput-
ing applications as those that naturally map onto the GPU
roadmap. As GPUs become more programmable, questions

arise of what other applications can be mapped onto GPU
architectures and how GPUs should be rearchitected to ad-
dress the needs of the broader application base. We refer to
this general acceleration architecture as an xPU (as do oth-
ers [24]).

2.1 VISbench

To address the question of xPU architecture, we have
created an experimental benchmark suite consisting of a
sampling of visual computing applications. We selected
open-source applications that have some relevant deploy-
ment in commercial products (such as video games).

In VISBench ' (Visual, Interactive, Simulation Bench-
mark Suite) we cover classic visualization application areas,
such as high-quality graphics rendering (Blender) and light-
ing (POVRay), and also video encoding (H.264), applica-
tions that are in commercial use today but which also have
a continual need for improved throughput. We also cover
emergent applications, such as interactive dynamics simula-
tion (Open Dynamics Engine), computer vision (OpenCV)
and high quality medical imaging (MRI), applications that
are made possible by the widespread availability of low-cost
high-performance xPU architectures.

We devote the following subsections to briefly describ-
ing the benchmarks and their chosen input sets, and outlin-
ing the intrinsic parallelism within the application.

2.1.1 Scanline rendering: Blender renderer

Blender [12] is a free-software animation and 3D model-
ing program. It can be used for a variety of tasks, includ-
ing modeling, texturing, skinning, animating, rendering, and
creating interactive 3D applications. We include Blender’s
internal 3D renderer as a VISBench application.

Blender supports multithreaded rendering. Each render
can be broken up into tiles, with each tile rendered in a sep-
arate thread. Each tile can be as small as a pixel quad (4
pixels). For this study we replace the multithreading with
annotations, as described in Section 4. For our benchmark
input, we use a complex image of a hairball with a room
as the background, rendered into a 640 x 480 image. This
image can be rendered by up to 76,800 threads, ranging in
length from 500K to 2.4M instructions. In our study we sim-
ulate roughly one thirtieth of the render over 2B instructions.

2.1.2 Ray tracing: POVRay

An alternative to scanline rendering is ray tracing. Ray trac-
ing is one of a number of highly compute-intensive global
illumination methods; that is, methods that render not only
direct lighting but also reflection, refraction, and diffusion.
The ray tracing algorithm mimics optics by tracing the path

Tt is our intention to publicly release VISBench in the coming months

taken by rays of light. The ray tracing algorithm is embar-
rassingly parallel. Each pixel calculation is independent of
every other pixel. Although different pixels may intersect
with the same object, requiring shared data structures, they
need not write to any shared data.

As with Blender, we use a serial version of this code
with annotations around the parallel loops. As input we use a
scene containing a chessboard with a number of glass pieces.
This input, which is included as part of the POVRay release,
contains a large number of complex reflections and refrac-
tions. The scene is rendered at 384 x 384.

In VISBench, POVRay is decomposed hierarchically,
with one thread for rendering each row, which in turn
spawns off one thread for rendering each pixel. A full render
produces 147,456 threads, ranging from 98K to 4M instruc-
tions. In our study we simulate roughly one tenth of the
render in 2B instructions.

2.1.3 Video encoding: H.264 motion estimation kernel

Modern video encoders take a sequence of raw images and
compress them, typically using a motion compensation-
based encoding technique. There are a variety of video
codecs currently in use, including H.262, H.263, and
MPEG-2. An emerging codec for high definition video con-
tent is H.264, also known as MPEG-4 AVC.

The compute-intensive portion of the encoding pipeline
is motion prediction, accounting for over 90% of execution
time even for standard definition content. Motion compen-
sation is a technique for describing a macroblock of pixels
within an video frame relative to a block of pixels in a refer-
ence frame.

The most suitable motion vector is one that minimizes
residual encoding information, and this is often done by
computing the sum of the absolute differences (SAD) be-
tween each pixel in the translated macroblock in the ref-
erence frame versus the corresponding block in the current
frame. The SAD computation is fast and simple, and easily
parallelized.

The SAD kernel is embarrassingly parallel and can be
parallelized in a number of ways. It can be vectorized to use
SIMD instructions such as SSE. It can be parallelized to run
on a GPU using an appropriate programming model (e.g.,
CUDA [8]). We use a standard CPU version of the kernel,
written in C, with annotations around the parallel loops. We
handle each macroblock in parallel, and within each mac-
roblock all of the SAD comparisons for a particular row.
One HD image has 3600 macroblocks, and a vertical search
range of 33, so we have 118,800 threads all roughly 22K in-
structions long. In our study we simulate roughly one fifth
of the computation in 2B instructions.

2.1.4 Dynamics simulation: ODE PhysicsBench

Simulation of rigid body physics is useful in a variety of
contexts, including scientific applications, engineering me-
chanical systems, and for adding interactivity and realism
to video games. Open Dynamics Engine (ODE) is a free
library for simulating articulated rigid body dynamics [42].
PhysicsBench [47] is a suite of physical simulations built us-
ing the ODE library. A parallel implementation of Physics-
Bench and ODE is described in [47]. The structure of com-
putation in ODE is very different from graphics rendering
and SAD computation, which are embarrassingly parallel
if properly coded. Physics computation exhibits distinct
phases with distinct levels of available parallelism. Broadly,
one step of physics simulation consists of collision detec-
tion, followed by a solver which determines the forces and
motion of interacting objects.

Our test simulation is the mixed simulation from
PhysicsBench. The simulation contains 1608 objects, 933
of them as boxes in breakable walls. This is a fairly small
scene, yet is still sufficient to allow the creation of enough
threads to fill a hugely parallel xPU. Collision detection gen-
erates 61 threads ranging from 390K to 2.3M instructions,
the constraint solver generates 192 threads ranging from
127K to 282K instructions, while cloth simulation generates
7000 threads ranging from 12K to 525K instructions. We
simulate one timestep in roughly 900M instructions.

2.1.5 High quality MRI

In magnetic resonance imaging (MRI), scan data from a
magnetic resonance scan is reconstructed into a 3D image
of the object being scanned. Due to the physics involved,
better images can be obtained by using a non-Cartesian scan
trajectory; that is, sampled data points are not taken on a
Cartesian grid.

The main computation in an image reconstruction from
the non-Cartesian data consists of computing two vectors, Q,
given by Q(zn) = Ym_; |¢(km)|?e02mEmen), and Fd,
given by [FHd]n = 271\:{:1 ¢* (k) d (K)l92TEmen)

The computation of Q is performed offline, based only
on the position of each sample. The computation of FHd
depends on the actual data values obtained from the scanner.
Both computations are nearly identical; we use only the F#d
computation as a benchmark. We perform the computation
of all F¥d values in parallel, with each independent threads
computing the value for different elements. A full MRI
image requires a square convolution with several hundred
thousand data points. In our study we simulate a 4096 by
4096 convolution which produces 4096 threads, each 240K
instructions long.

2.1.6 Computer vision: OpenCV based face detection

Computer vision (CV) deals with systems for obtaining in-
formation from images. CV algorithms analyze images or
video in order to recognize objects and reconstruct models
of the scene. One use of CV is detection and recognition of
human faces, important in such varied applications as auto-
focus in digital cameras, biometrics, and video surveillance.

OpenCYV is an open-source library containing many ba-
sic algorithms used in computer vision. FacePerf [13] is a
set of benchmarks for evaluating face recognition perfor-
mance. As part of VISBench we use a modified version of
the the OpenCV Haar-based face detector that is included in
FacePerf.

The face detector runs in repeated phases, each of which
in turn has 3 parallel sub-phases: a short phase to set up
the classifier, with 22 threads ranging from 1.3K to 95K in-
structions, and two phases running the classifer, each with
roughly 450 threads ranging from 43K to 975K instructions.

2.2 Performance scaling

In visual computing applications, there is a correlation
between the complexity of the data set the application is
operating on and the user experience. For instance, the
quality of a rendered image can be increased by rendering
more polygons, the fidelity of a physical simulation can be
improved by modeling more objects, and appearance of a
video image can be enhanced by increasing its resolution.
In this sense, VISBench applications are appealing targets
for vendors of high performance hardware, as these applica-
tions can take advantage of rapidly scaling computer perfor-
mance.

It is uniformly the case that each of the VISBench ap-
plications contains short section(s) of serial code in addition
to the time-intensive parallel portions. Running the VIS-
Bench applications with the inputs sets we studied, we find
that over 95% of execution time on a serial machine is spent
in portions deemed parallel by our parallelization model.

Furthermore, and perhaps more important, all of these
parallel sections are either O(n?) or quasi-O(n?)* in the
number of primitives being processed (such as pixels, poly-
gons, objects, etc). That is, as the complexity of the visual
simulation grows, as is the desire from generation to gen-
eration, the parallel workload grows rapidly. Hence, these
workloads benefit from Gustafson’s Law, which states that
any sufficiently large problem can be efficiently parallelized.
This is an important thing to note as it implies that an accel-
erator architecture can be scaled through parallelism with
Moore’s Law and still provide value to the same application
base.

tO(n) with significant constants or worst case on?)

3. Accelerator Meta-architecture

In this section, we examine the architecture for a vi-
sual computing accelerator at a high level. We introduce the
basic architecture of the accelerator as a massively parallel
co-processor that can speed up compute-intensive parallel
portions of VISBench. Given this basic architecture, there
are a number of important high-level issues to examine, in-
cluding synchronization and data communication, and the
execution model within the parallel compute fabric.

We examine data sharing and synchronization proper-
ties of the VISBench applications and use them to motivate
communication mechanisms that are different from a tradi-
tional multicore and yet also unlike GPUs. Specifically, we
propose moving basic cache coherence functions from hard-
ware to software as a means to improve the area efficiency
without incurring unreasonable overhead.

In addition, examine control flow divergence and ex-
plore its implications for the accelerator’s execution model.
We compare multicore-style MIMD execution against GPU-
style SIMD execution of scalar threads, and find the former
to be strongly preferable over the broadest set of applica-
tions.

3.1 Acceleration model

This study examines the accelerator co-processor ex-
ecution model. That is, we are interested in mapping the
long-running, compute-intensive portions of the VISBench
benchmarks onto an accelerator architecture that is attached
to a host CPU via a commodity system interconnect such as
PCI Express or HyperTransport. In this paper, we specif-
ically examine the chip-level tradeoffs associated with de-
signing the accelerator architecture for maximizing through-
put on these compute-intensive portions.

In this accelerator model, both the CPU host and the
xPU have memories that are disjoint from the programmer’s
perspective and must be managed via explicit DMAs. A va-
riety of strategies have been deployed over time on GPUs
and on Cell for amortizing the latency, reducing the band-
width, and reducing programmer burden [28] associated
with the separated memories. In this paper, we focus in on
the compute-intensive portions assuming that the transfer la-
tencies between the host and xPU can be overlapped or are
small.

3.2 Basic Architecture

Figure 1 shows the basic architecture of an xPU. The
xPU consists of a compute array of a large number of mini-
mal cores, arranged in clusters, connected to a large shared
cache. It also contains a controller core, a high bandwidth
memory system, and a hardware assisted thread manage-
ment system.

The xPU is connected to the rest of the system via a
standard interface such as PCle or HyperTransport. The sys-
tem can transfer data and commands to the xPU through
DMAs. On the xPU side, communication with the rest of
the system is handled by a single controller core, which is
also responsible for initializing the program to be run on the
accelerator.

The compute fabric of the xPU consists of an array of
mini-cores. Each core consists of an execution pipeline with
integer and floating point execution units, register files, and
small instruction and data caches. These cores are arranged
into clusters which share a common link to the global inter-
connect, to allow cores to share bandwidth.

The on-chip interconnect connects the compute array to
the global cache. The global cache is a large, multi-banked
cache accessible to all the cores in the array. The memory
space, which is shared by all cores, is striped across the
global cache banks at the granularity of a cache line, with
one access allowed per bank per cycle. This arrangement al-
lows us to have a very large global cache bandwidth, which
in effect multiplies our memory bandwidth.

The global cache is also connected to a high-bandwidth
interface to off-chip memory. Several banks of global cache
are connected to a single memory controller, which controls
a single high-bandwidth DRAM channel, striping the mem-
ory space across the DRAM channels.

3.3 Synchronization and communication

One important element in the design of a parallel archi-
tecture is what support to provide for synchronization and
data communication among parallel processing elements.
Traditional multicore architectures provide extensive sup-
port for fine-grained synchronization via atomic primitives
upon which to implement such higher level constructs as
locks and semaphores. Multicore architectures also provide
extensive support for data communication through a cache-
coherent shared memory. Supercomputers, on the other
hand, provide message passing interfaces. These interfaces
allow for simple and highly scalable synchronization mecha-
nisms, but complicates the programmer’s task with regard to
sharing data. Finally, GPUs provide a minimum of support
for communication, requiring data to go off chip to memory
and then be read back in. In the xPU, we envision provid-
ing a compromise between these approaches that reflects the
synchronization and data communication patterns in VIS-
Bench applications.

As we extend the visual computing domain beyond
classic raster graphics, we find that at minimum support for
a bulk synchronous model is essential. For instance, in ray
tracing we need to set up the data structures representing
the geometry, then synchronize, and then begin the pixel-
by-pixel ray tracing, then synchronize, and then output the
result.

Only one of the VISBench benchmarks requires fine-
grained synchronization support: ODE-based physics simu-
lation. Physics simulation needs to deal with the occasional
concurrent data access from different threads arising from
some sort of interaction between the threads. For more in-
formation on the fine-grained data access, see [47].

However, while fine-grain synchronization support is
required in general for Visual Computing, it is often not
performance-critical (because the locking occurs with low
frequency or the conflicts are rare), and can be isolated, as in
the case of the physics application, by pre-mapping the inter-
acting objects to co-located or non-concurrent threads [14].
Slow fine-grained synchronization can be implemented on
a non-coherent machine by performing primitive operations
at the shared level and keeping synchronization variables out
of private caches, and for VISBench applications this is suf-
ficient.

The data communication patterns in VISBench can be
identified by examining the interaction between loads and
stores from different threads. Figure 2 shows the differ-
ent possible patterns of data communication among parallel
threads. Figures 3 and 4 show the distribution of loads and
stores among data that is shared, input, and private. Most of
the loads on most benchmarks are private. However, a large
fraction of the loads (20%-83%) are input reads to data with
multiple readers. The frequency of accesses to such read-
shared data suggests that a shared memory model would be
preferable to message passing.

Cache coherence allows parallel processing elements to
communicate data through memory without incurring a per-
formance overhead in the absence of a collision. This is
particularly useful if the application has many writes to and
reads from write-shared data, but where writes to the same
location rarely collide. In VISBench applications, stores to
non-private data are rare, and while loads from non-private
data are common, the vast majority are separated from their
corresponding writer by a synchronization barrier. This sug-
gests that fast, automatic cache coherence in hardware may
be unnecessary.

Hence, we envision the xPU having a non-coherent
shared memory. In such a model, stores to shared data must
be communicated explicitly. Specifically, all stores to such
data must propagate at least to the global cache, where it be-
comes visible to all readers. Furthermore, all stores to output
data must be flushed out of private caches at synchronization
barriers. Likewise, loads that may access write-shared data
must also propagate at least to the global cache. Essentially,
we require cache coherence to be maintained in software.

3.4 MIMD execution

Traditional supercomputer architectures were often vec-
tor machines that operated on large vectors. This sort of
global SIMD, different from the 128-bit SIMD found in

cluster shared CPU
bus i e
teach
[]«—*—L] e
B core terface
lJ ICEC'\ED \ r
— — o | [i |system
L jq-b 4—»[_)‘] MNTT - > mem
O O :
— z k =% 1o giobal 3
itascon K L2 GPU
e cache ik
O | O .
| feetes] | - N -
g =3 \ controller
: O e e mll NN
cluster co::;“h, compute e
! i array <=
|]
! : system
bus

Figure 1. Block diagram of accelerator

output write
multiple readers

output
write

mput
reads

J

Figure 2. Bulk synchronous parallelism

most modern CPU architectures, was very effective at ob-
taining high performance on numerical applications. Mod-
ern graphics chips rely on SIMD execution for executing
programmable kernels.

The compute fabric of the xPU can either be designed
using discrete cores which execute in a MIMD fashion, or
it can be designed with clustered scalar pipelines that exe-
cute in SIMD lockstep in a manner similar to GPUs. Dense
numerical applications are able to take advantage of SIMD
because of the very regular pattern of control flow. In the

fraction

fraction

Breakdown of loads

8 reads to wirite shared data
B input reacsimuitiple readers
B inout reaas/singie reader

@ private reads

ODE

- =7
Blandar MRI POVRay H264

Figure 3. Loads to shared versus private data
Breakdown of stores

10000%

] shered writes/angle resder

[shared writeg/miutipie readars
B ouput wiltestrinown readers
8 ouput wiltes/single readsr

[l oupu witesimutple readers
B deaa wirttes

'l prvate wittes

MRI

ODE

Blender Facadetect POVRay H 264

Figure 4. Writes to shared versus private data

case of visual applications, we could replace the thread ex-
ecution model (which is notably MIMD) with large scale
SIMD if the control flow were largely the same across dif-
ferent threads. On the other hand, if control flow varies from
thread to thread, SIMD hardware will suffer a performance
loss as all of the parallel threads would be forced to take the
longest control flow path.

To determine whether SIMD or MIMD is preferable, we
compare the instruction throughput per pipeline of a SIMD
machine with that of a MIMD machine, assuming an ideal-
ized memory system. Scalar threads from each benchmark
are grouped into warps, with the threads in a warp operating
on consecutive data elements to minimize the potential for
divergence. As long as all threads in the warp are follow-
ing the same control flow path, the SIMD machine executes
the warp in lockstep. When threads diverge, the threads ex-
ecuting down one path are serialized relative to the threads
executing down the other. When the threads in each of these
subwarps reconverge, they once again execute in lockstep.
We use the immediate postdominator of the divergence point
as the reconvergence point, which has been found to be near
optimal on real programs [21]. We use a control flow stack
to handle multiple levels of control flow divergence, so that
we can handle divergence and reconvergence even within
subwarps.

Figure 5 plots the relative IPC (per pipeline, relative to
MIMD) for varying warp sizes. We can see that for some
applications (H.264 and MRI), the SIMD efficiency is very
high, even for large warp sizes. Other applications, however,
have a declining SIMD efficiency as the warp size grows.

We want to compare the performance of MIMD and
SIMD relative to area. MIMD requires all the control flow
logic of the core to be replicated for each pipeline, whereas
SIMD only requires one set of control logic per cluster.
However, SIMD still requires the register files, functional
units, caches and cache ports, and data bits of the pipeline
latches to be replicated. We find that roughly 40% of the
pipeline area does not need to be replicated. Hence, a 2-
wide SIMD cluster has 1.6 times the area of a scalar pipeline,
while a 4-wide has 2.8 times the area.

Figure 6 shows the ratio between area and IPC per clus-
ter for varying warp sizes. The benchmarks in VISBench
separate clearly into three groups. The first group is the
one that had nearly perfect SIMD efficiency (i.e. H.264 and
MRI). The second group (Blender and ODE), shows a mod-
est performance benefit for small warp sizes, but then ex-
ponentially decreasing performance as the warp size grows
large. The third group (POVRay and Facedetect) shows per-
formance loss with any level of SIMD, and exponential per-
formance loss with large warp sizes.

Note that we are assuming perfect memory, so in prac-
tice this result is an upper bound (outside of a restructur-
ing of the application). We must also point out that Blender
and H.264 required a moderate (but reasonable) amount of

1 2 threads/verp
il 4 threads/varp
i i ¢ 8 threeds/warp
0.4+ ; | iy i & _ |l 16 threadshverp
| | 4 > 32 threads/warp

Blender MRl facedetect ODE

* POVRay H.264

Figure 5. SIMD efficiency for varying warp
sizes

Perf/area vs. warp size

KR

i

1% Blender |
» Y\um i
IS, e
.8 \ ¥

relative perffarea

warp size

Figure 6. SIMD performance per area for vary-
ing warp sizes

hand tuning in order to achieve their level of SIMD perfor-
mance. With substantial additional programmer effort, one
may be able to reclaim much more of the performance loss
from SIMD, but this optimization comes at a substantial cost
in development time.

This result indicates that SIMD, while a substantial con-
stant factor win for some applications, is a much larger per-
formance loss for others. It also illustrates one of the lim-
itations of GPUs as they expand into more general purpose
application domains. For numerical applications and the tra-
ditional applications for GPUs, SIMD is the right design
choice. However, the performance potential of SIMD ar-
chitectures is limited as the space of applications expands.

For the remainder this paper, we assume a MIMD ar-
chitecture.

4 Microarchitectural Evaluation of Architec-
tures for Visual Computing

In the previous section, we examined some of the high-
level aspects of an accelerator architecture. In this section,
we examine the architecture with a detailed analysis to deter-
mine the performance effects of specific microarchitectural
decisions. Furthermore, we examine these effects relative to

their cost in chip area.’

Essentially, we ask the following question: if we were
designing a chip with a specific area budget, how should we
architect that area to maximize performance. We assume a
large area budget (400mm? in a 65nm process technology),
and examine how to architect each compute core, at what
level of sequential performance, and with what architectural
and microarchitectural features. Furthermore, we examine
the cache design for the chip, examining the tradeoff due to
varying the fraction of the chip devoted to caching versus
logic.

To perform this evaluation, we have developed a per-
formance measurement methodology based on simulation.
In addition we have developed a model to compute the area
cost of a variety of microarchitectural features by mapping
out the required hardware in detail and then determining the
area cost of each component.

4.1 Area Modeling Methodology

Modeling area is a challenge for architecture re-
searchers. A variety of methods are available for estimating
the area from a given core architecture.

The most accurate way to model] the area of a core is to
design the core in RTL and synthesize, place, route, and op-
timize for speed, power, and area constraints. Unfortunately,
this method requires developing RTL for all of the various
design possiblities, a time consuming endeavor, and is not
ideal for a high level design space exploration.

A much simpler method used by previous researchers
is to measure components of real designs using die photos
or published values [26]. [36] extends this method by using
analytical formulas. However, this method is restricted to
the design assumptions made by the vendor of the baseline
design.

We use a hybrid approach that allows us to evaluate a
larger design space. Area estimates were obtained based on
a detailed design of each of the pipeline configurations. A
65nm process is assumed for all estimates. Each configura-
tion was decomposed into its major components, and area
models were derived from base component counts. Cache
and memory structures are modeled using CACTI-6 [37]
when possible. Synthesis results for ALU and FPU com-
ponents are used when possible ([44], [31]). When syn-
thesis results are not available for components, we obtain
area estimates by designing the structures down to the logic
level and counting of the number of gates, flops, and SRAM
bits required in the implementation. When necessary, data
from earlier process generations is scaled to the 65nm node.
Standard cell density is assumed to be 75% of the maximum

$Power, like area, is a dominant component of cost. For tractability and
focus, we isolate the effects of area in the experimental section, and treat
power in our discussion in Section 5.

logic density. Detailed information on VLSI circuit parame-
ters such as average gate size may be found in [6].

We compose these components in order to model three
different basic pipeline configurations: A 1-wide in-order
pipeline, a 2-wide in-order pipeline, and a 2-wide out-of-
order pipeline. These pipeline configurations represent the
sort of architectures that are often considered for many-core
design, because of their small area and high ratio of perfor-
mance to area.

For each basic configuration, a 1GHz (low-speed) and
2GHz (high-speed) variants are considered. It is expected
that the high-speed variant will have more intensive custom
design effort applied to meet timing and area targets. These
clock targets correspond roughly to 40FO4 and 20FO4 re-
spectively [40].

The 1-wide configuration consists of a standard 5-stage
fully-bypassed, in-order pipeline with a static BTFN predic-
tor. The high-speed variant has a 9 stage pipeline and uses a
simple bimodal predictor.

The 2-wide in-order pipeline consists of 6 stages with
a bimodal predictor. A second simple ALU is added to the
execution stage (adder and logical operations, no shifter or
multiplier). The high-speed pipeline model has 10 stages
and a bimodal predictor.

The out-of-order pipeline consists of a 6-stage, 2-wide,
out-of-order pipeline with a bimodal predictor. The pipeline
is modeled roughly after the P6 microarchitecture. Execu-
tion resources remain the same as the 2-wide in-order. The
ROB contains 24 entries, the scheduler 12 entries. The high-
speed design has 10 stages, uses a more sophisticated YAGS
predictor [18], and doubles the size of the ROB and sched-
uler.

For each basic configuration, we examine the effects
of additional performance enhancing features such as word-
level SIMD and multithreading. We model the addition of
2-way and 4-way SIMD, 2-way and 4-way multithreading,
and special purpose functional units for sine and cosine. The
additional cost of word-level SIMD (a la SSE) is modeled by
increasing the number of execution units available as well
as accounting for the increase in pipeline registers. No addi-
tional register files are added for SIMD, but read and write
ports are scaled appropriately. The incremental cost for mul-
tithreading is modeled by replicating portions of the front-
end stages (fetch, decode, rename), the architectural register
files, and the RAT. A hardware implementation of trigono-
metric and trascendental functions is described in [41]. We
model this unit having a delay of 6 cycles in the low fre-
quency case and 10 cycles in the high frequency case, and
pipelined with 2 stages such that operations can begin once
every 3 or 5 cycles, respectively.

Table 2 shows area by major hardware function for each
of the basic configurations. Frontend includes fetch and
decode as well as scheduling and renaming as appropriate.
Other includes remaining logic and pipeline registers.

Table 1. Baseline X

PU Architecture

Size Latency Organization
Int ALU 32-bit 1 cycle 1or2 ALUs
FPU single-precision 5 cycle 1 FPU
L1 ICache 4KB 1 cycle 2-way
L1 DCache 8KB 1-2 cycles 4-way
GCache 8MB 20+ cycles 32 banks, 8-way
DRAM 128GB/s 50ns 8 channel, 64-bits/channel, IGHz DDR

We make the simplifying assumption in this study that
adding cores does not affect the incremental area consumed
by the interconnect. Because we want to focus on the
core and cache architecture in this study, we want to min-
imize the impact of the interconnect. Hence, we model the
bandwidth limitations at the global cache level and assume
that we can build a network, perhaps somewhat overprovi-
sioned, that is capable of maximizing the utilization of the
global cache. Because we hold the global cache bandwidth
fixed, we would not need to significanly increase the area
consumed by the interconnect in order to supply maximal
gcache utilization to a larger number of cores.

Our area numbers are not meant to be “canonical” area
numbers for the given configuration. Physical design itself
involves a large design space exploration, and a given mi-
croarchitecture can be implemented by widely varying lay-
outs. Assuming that we use synthesis to generate the layout,
sources of variation include wiring overhead due to place
and route (since optimal place and route is NP-hard), choice
of libraries, choice of logic gates, and padding due to DFM.
We used a 33% overhead to encompass all of these, but in
real designs the overhead can vary dramatically. In later sec-
tions we will assume a confidence interval for our area num-
bers of £20%. This number was the empirical variation in
area for layouts generated by the Synopsys Design Compiler
in [32].

Other potential sources of inaccuracy in our model in-
clude mismatches between the architectural and logic level
design, uncertainty in the results from tools such as CACTI,
and uncertainty in area numbers for our components. We
cross-checked our area results against existing designs such
as the MIPS 74K [3] and Tensilica 108Mini and 570T[4].
These commercial cores contain additional logic for fea-
tures that our cores lack. However, they show that the core
areas shown in Table 2 are achievable. Nvidia’s G80 is
essentially a chip multiprocessor with significant graphics-
specific hardware. Intel’s 80-core Teraflop Research Chip
[43] and IBM’s Cell [27] target high clock frequencies with
a penalty in area. Table 3 shows area data for existing de-
signs.

Table 3. Area Comparison of Commercial
Cores (Normalized to 65nm)

Area in mm?
Tensilica 108Mini .143
Tensilica 570T 349
MIPS 74k 1.7t02.5
Nvidia G80 1.87
Nvidia G92 2.46
Intel 80-Tile 24
IBM Cell 4x Vector FPU .65

4.2 Performance Modeling Methodology

Our performance modeling methodology is driven by
sequentialized versions of each application, versions that
contain the algorithm and data structures of the parallel ver-
sion, but with the actual threading calls removed. In their
place, we insert dummy function calls that serve as annota-
tions to mark the boundaries of parallel execution. We place
these annotations around the parallel loops and at the begin-
ning and end of each iteration.

We run our annotated binaries through a functional sim-
ulation frontend that simulates x86 code. This frontend
fast-forwards the sequential code to reach the parallel por-
tions that would run on our accelerator. The frontend de-
tects the dummy function calls that serve as thread bound-
aries and generates an instruction trace for each thread. A
cycle-accurate timing model simulates the performance of
all cores. The submodel for each core executes the instruc-
tion traces of the threads it has been assigned.

In addition to cores, we model the cache hierarchy
as proposed earlier. We model the global cache as multi-
banked with 1 access allowed per bank per cycle. The main
memory is modeled as having 8 channels, with memory ad-
dresses striped across the channels.

Note that we have access to parallel implementations of
each of our benchmarks; however, the parallel versions of
our benchmarks are unsuitable for this study. The parallel
implementations suffer from performance overheads due to
system calls for thread creation and scheduling. In our gen-
eralized accelerator model, we assume that such tasks will

Table 2. Area breakdown by pipeline component in mm? (Low-Speed variants)

Frontend | Execution | Caches (4KI/8KD) | Other | Core(total) | +SIMDx4 | +MTx2 | +MTx4 | +Transcendentals
1W in 0.016 0.068 0.140 0.009 0.330 0.200 0.032 0.096 0.019
2W in 0.066 0.092 0.150 0.026 0.420 0.250 0.074 0.220 0.019
2W out 0.200 0.092 0.150 0.057 0.590 0.250 0.120 0.360 0.019

be performed in hardware. We remove these overheads in
order to focus on the requirements for the compute portion
of the accelerator.

We’ve compiled our benchmarks using gec 4.1.2, with
the -O3, -ftree-vectorize, -ffast-math, -mfpmath=sse, and -
march=pentium4 optimization flags. POVRay uses the ad-
ditional flags -malign-double and -minline-all-stringops. We
run each benchmark either until completion or until 2 billion
instructions. We fast-forward through initial sequential code
ranging from 20M instructions for the SAD kernel to 123M
instructions for POVRay. As discussed in Section 3, we are
assuming an accelerator model where the host CPU is re-
sponsible for executing startup code.

4.3 Experimental Results

In this subsection we experimentally approach the ques-
tion of how to design an xPU accelerator architecture that
maximizes throughput. We evaluate the different base
pipeline organizations described above. We also evaluate the
performance versus area tradeoff of SIMD instructions and
fine-graind multithreading. Finally, we evaluate the perfor-
mance effects of varying aspects of the memory hierarchy.

The baseline parameters of our chip architecture are
listed in Table 1. We assume that we have an area budget
of 300mm? for the compute array and the shared cache, the
portions of the accelerator architecture we are studying. We
divide this area into 200mm? for the compute array, which
includes all the cores with their respective L1 caches, and
100mm? for the global cache.

We used CACTI to find the largest global cache size
that would fit in 100mm? with 32 banks such that each bank
has an access delay under 1ns (8MB). This value is consis-
tent with the cache sizes seen on current generation micro-
processors. We also assume a fixed memory bandwidth of
128GB/s; memory bandwidth is a function of the number
of pins available on a package, and tends to have an upper
bound in any given process generation. The gcache band-
width we need to fully utilize the memory bandwidth is the
memory bandwidth divided by the expected miss rate. With
amiss rate of 12%, 32 gcache accesses per cycle (1024GB/s)
is a reasonable value.

4.4 Core Pipeline Architecture

Initially we ask the question of how one should design
the core pipeline architecture of each processing unit within
the xPU given the tradeoff in area/performance for each style
of core.

Figure 7 plots the performance per area (total through-
put divided by the 200mm? of area used by the compute fab-
ric) versus the area per core. Each data point represents the
harmonic mean of the throughputs of the 6 benchmarks for a
particular core architecture, cache size, and core count cor-
responding to that configuration. The smallest single-issue
in-order configuration, with a core area of 0.205mm? includ-
ing L1 caches, allows us to fit 975 cores in the array. The
largest 2-issue out-of-order configuration, with a core area
of 1.10mm?, allows us to fit 182 cores in the array.

First, we note that the smallest, inl configuration is not
the highest performing despite its high core count. With
a small cache and a large number of cores, this configura-
tion is global cache bandwidth bound on most of the bench-
marks. On the one benchmark where it is not bandwidth
bound (H.264 ME), it is the highest performer.

Second, we note that the highest performing configu-
rations are in2. The in2 configurations provide the highest
theoretical throughput, and even with code such as ours that
is not optimally scheduled, we are able to take enough ad-
vantage of ILP in order to overcome its area penalty versus
inl.

Third, we note that the best performing inl, in2, and
out2 configurations are fairly close in performance, within
the uncertainty margin of our area model. Moving from inl
to in2 reduces the pipeline utilization (achieved througput
vs. theoretical throughput), but benefits from increased exe-
cution resources. Moving from in2 to out2 restores the uti-
lization by scheduling around instructions such as FP oper-
ations with moderate latency, but due to the increased area
overhead from the scheduling logic blah.

4.5 Word-level SIMD

In Section 3, we examined the performance potential of
scalar threads executing in SIMD lockstep. Here we exam-
ine word-level SIMD (SIMD operations on small vectors),
which most high performance architectures feature. Exam-
ples include AltiVec on PowerPC and SSE on x86.

ol
©
4
|

o

=}

®
i
|

F

o
o
.
>
%
o
o
o

.

|

o
~
o

ot

=]
w
o

.
1
it

o ¢
N

=in2
out2

performance per area (GOPs/mim2)

°
o =

0.2 04 0.8 08 1 12
area per core (mm2)

=]

Figure 7. Performance for different pipeline
configurations

Figure 8 shows the speedup from adding 128-bit SIMD
instructions to our baseline architecture. For inl, the area
overhead is 59% (39-89% with our area model confidence
interval), for in2 it is 58% (39-87%), and for out2 it is 43%
(28-64%). The minimum overhead is computed by com-
paring the upper bound of the baseline area with the lower
bound of the extra area consumed by SIMD. Likewise the
maximum overhead is computed by lower bound of the base-
line with the upper bound of the SIMD area. The error bars
on the figure account for the variable area estimates.

From the figure we see that SIMD is generally results
in a loss of performance on our versions of VISBench, es-
pecially with in-order pipelines. This is because, for small
core sizes, the area of the FP unit is a large fraction of the
total and the penalty for replicating it 4 times is very large
relative to the utilization rate.

Furthermore, the benefit is limited to those applications
for which the gcc compiler is able to generate substantial
amounts of vector code. The MRI kernel is easily vector-
ized. The OpenCV library was heavily optimized for SSE
instructions, with 14% of all operations being SIMD. These
two applications were able to achieve modest speedups with
the out-of-order configuration, but losses with in-order. Por-
tions of ODE, POVRay, and Blender were also vectorized.
However, in the other applications, the amount of vectorized
code is too small to overcome the area cost of the additional
FP units.

Traditional GPU architectures also used 4-wide vec-
tor SIMD, in addition to lockstep execution. However, the
newest GPUs have moved to scalar shader pipelines, rein-
forcing our result. One should note that word-level SIMD
makes more sense on a processor optimized for single-
thread performance (such as a multi-core desktop CPU)
where area per core is large and the cost of SIMD support is
relatively minor.

Speedup vs. In2 Base

0.8 1

0.6

0.4 4

Speedup vs. Base

0.2

Facedetect ODE
Figure 8. Relative performance of chip with
SIMD instructions

Blender MRI POVRay H.264

=) =y oy e
o - N ®
e 4

o o o
N A~ O
e

(=]

Facedetect ODE H.264

®|in2m2 @in2mt4

Figure 9. Performance of 2-wide in-order con-
figuration with multithreading

Blender MRI

4.6 Multithreading

Multithreading is an important technique to get around
stalls due to long latency memory operations, and for appli-
cations that are throughput-oriented, hardware multithread-
ing seems like a natural fit.

In Figures 9, we show the relative performance of con-
figurations with fine-grained multithreading added. The re-
sults show that, for most benchmarks, 2-way multithread-
ing is able to provide a performance benefit. The exceptions
are the H.264 motion estimation kernel, which achieves high
utilization even without MT, and Facedetect, which suffers
load imbalance as the number of contexts exceeds the num-
ber of available threads.

Four-way multithreading, on the other hand, does not
generally have a performance benefit. Our VISBench appli-
cations spend far less than half of their time stalled waiting
for loads, and 2 threads is sufficient to cover most of the av-
erage stall cycles. Furthermore, the area cost of multithread-
ing grows linearly as thread count, as you need to continue
replicating structures such as the register file.

Speedup vs. Base

i Facedetect . QODE N POVRay . H.264
Figure 10. Relative performance of chip with
hardware trig unit

Blender MRI

4.7 Hardware Implementation of Trigonometric
and Transcendental Functions

VIS workloads rely heavily on a small set of complex
functions, such as sin, cos, atan, exp, sqrt, and rsqrt for cal-
culating transforms, angles of incidence, and various other
geometric and visual actions. Table 4 shows the frequency
of such operations in VISBench.

Figure 10 shows the relative performance of the config-
urations with an added hardware support for trig and tran-
scendentals. The figure shows improved in-order perfor-
mance with the trig units. The performance benefit is par-
ticularly strong for MRI, which has the heaviest concentra-
tion of such operations, with one of every 32 operations
being either sin or cos. SAD, on the other hand, shows
very little performance effect from such units. Facedetect,
ODE and POVRay, meanwhile show a small performance
benefit, roughly within the margin of error. The actual trig
calculation is performed with a series of table lookups, FP
adds, and FP multiplies, each of which is sequentially de-
pendent. Hence, a slow trig calculation occupies the FP unit
and blocks progress in the in-order machine but not the out-
of-order machine.

4.8 High Frequency Pipelines

ASIC design can be carried out using one of several dif-
ferent design flows, each of which is targeted to a differ-
ent level of performance. A low-frequency design is carried
out using a different design flow than high-frequency design,
with high-frequency design requiring some amount of cus-
tom design and placement.

A core designed to achieve high frequency will utilize
both deeper pipelining and circuit level techniques such as
the use of fast logic styles and resizing transistors for min-
imum delay. Both factors are likely to increase area and
design time. Given this, as well as power considerations, we
would need to see a clear benefit to a higher clock rate in
order to justify high frequency.

o ©
o o =

Speedup vs. Low Frequency

Blender MRI

Facedetect ODE
mint min2 -omZi

Figure 11. Performance for high frequency
chip

POVRay H.264

We assume we can design a high frequency running at
2GHz core. Such a core would need to have both a deeper
pipeline and faster logic for individual components. The 5
stage single-issue pipeline grows to 9 stages, while the 6
stage dual-issue pipelines grow to 10 stages. Furthermore,
the area cost of integer and FP ALUs grows considerably in
order to maintain the same latencies in terms of the number
of cycles.

Figure 11 shows the speedup from our high frequency
design. The figure shows, for most benchmarks and pipeline
configurations, a small performance benefit, within the error
margin of our area model.

4.9 Cache sizing

Cache sizing is an important parameter in architecture
design. Previous CMP optimization studies have shown that
optimal cache size is a function of the application being run.
We examine performance per area for the core configura-
tions with varying cache sizes. Figure 12 plots all the data
points, this time highlighting the different cache sizes.

From the plot, we can see that most of the highest
performing configurations have the 4K/8K L1 cache sizes,
while many of the 8K/16K configurations also perform well.
One the other hand, the configurations with the smallest and
largest cache sizes perform worse.

4.10 Memory Bandwidth

Previous work on parallel applications has found mem-
ory bandwidth to be a first-order performance constraint,
particularly on unoptimized code. In the preceeding studies,
we simulated a chip with 128GB/s of bandwidth to the off-
chip memory system, modeled as eight independent 16GB/s
channels with blocks striped across the channels. This mem-
ory bandwidth is large, but is within the achievable limit for
65nm chips, and is fairly close to the bandwidth enjoyed

Table 4. Frequency (per 1000 instructions) of trig and transcendental operations

atan | sqrt | exp | total

006 | .06 | 0 | .08

0 0 0 | 300
0 S9 1 0 .59
03 | .03 .52 L7
002 0 | .01 | .03

benchmark | sin cos
blender .013 | .006
mri.fh 15.0 | 15.0
facedetect 0 0
povray .001 | .08
ode .02 0
09 ~
E 08 —&
g 07 A =
8 061 L —
§ 05 — *
g 04 - —
* 2K¥aKD
E 03 «AKVBKD
0.2 75 ol AR—
5o iy
0]
0 0.2 c.4 08 038 1 1.2

area per core (mm2}

Figure 12. Scatter plot highlighting different
cache sizes. Circled data points are examined
in detail

by the latest high-end GPUs. Figure 13 plots the perfor-
mance of the low frequency 2-wide in-order configuration
with varying memory bandwidths. From the graph, it is
apparent that performance on the more bandwidth-intensive
apps saturates as the bandwidth reaches 64GB/s, indicating
that 128GB/s is an appropriately sufficient bandwidth for the
xPU configurations we evaluate.

Part of the reason this amount of memory bandwidth
is sufficient is the global cache’s ability to service a large
fraction (80-90%) of the memory requests coming from the
cores. In the preceeding studies we simulated a global cache
capable of servicing 32 memory accesses per cycle, with
each access being 32B, for a total bandwidth of 1024GB/s.
Figure 14 plots the performance of the same 2-wide con-
figuration with a varying global cache bandwidth. On the
more bandwidth-intensive applications, the chart shows per-
formace falling clearly into two regimes: one where perfor-
mance varies linearly with bandwidth, and one where the
performance is compute-bound. The performance saturates
as bandwidth exceeds 768GB/s, indicating that 1024GB/s is
an appropriately sufficient level.

Note that this result was achieved by performing a few
simple optimizations on the application code. In particu-
lar, we were able to reduce the bandwidth requirement for
MRI from nearly 2TB/s down to only 60GB/s by blocking
the convolution. We were also able to reduce contention for
gcache banks by offsetting each core’s stack such that dif-
ferent cores’ stacks began in different gcache banks.

normalized throughput

normalized throughput

0.9
0.8 4

0.7 s
0.6 -
0.5+
0.4 -
0.3
0.2
0.1 4+/-

ME——
32

16
mem BW (GB/s)

Figure 13. Performance versus memory band-
width (normalized to maximum)

1 -y

0.9 A 7
/e _
0.6 / / l_Blender
0.5 / / i: :Rclpdele(t
6 / / '\ ODE

; [\, POVRay
Ns ANCETIN
0.2 L —

0.1+

o
64

T T T T T 1
512 768 1024 1280 1536 2048

gcache BW (GB/s)

128 256

Figure 14. Performance versus gcache band-
width (normalized to maximum)

Speedup

528 9395

200
180

160

140 4

120 T—

100 +— | ‘ l
=]
80 {—
60 ~
40 +—
20—

e T

Blender MRI Facedetect ODE POVRay H.264
Figure 15. xPU performance versus 2.2GHz

Opteron

4.11 Summary: an xPU prototype

Pulling the optimal result from Figure 7, we obtain a
configuration with 2-wide in-order issue and a 4K icache/8K
dcache, a configuration with 573 cores and an average
throughput of 165GOPs. Figure 15 shows the speedup of
this configuration over a single-core 2.2GHz Opteron. On
the parallel sections of VISBench (86% to over 99% of
the execution time), the xPU attains an average speedup of
103X. Even when sequential code sections are factored in
(up to 14% of execution time in Facedetect and ODE), the
total speedup obtained remains over 6X.

5 Discussion

In this section we discuss a few important topics that are
beyond the scope of our experiments.

5.1 Power consumption

Power consumption is a first-order consideration con-
sideration in processor design. Often, a chip’s clock speed
is constrained by a power supply or cooling limitation rather
than cycle time. High performance architectures are devel-
oped to fit within a certain maximum power budget under all
conditions. The design goal is to achieve maximum perfor-
mance without exceeding the power envelope.

The power consumed by the chip is equal to the energy
consumed per operation times the throughput in operations
per second. If power is the limiting factor, then throughput
is maximized by minimizing the energy consumed per oper-
ation. In general, the more complex the pipeline, the greater
the number of gates and latches a given operation will need
to traverse, and hence the greater the energy consumed per
operation. As a result, a power supply constraint generally
favors a simpler and in particular a shorter pipeline.

We leave it to future work to develop a power model and
revisit our conclusions in the presence of a power budget.
We do not expect power considerations to have a major im-
pact regarding our conclusions about SIMD (at either level),
hardware supported trancendental functions, or the effect of
memory bandwidth. It may impact our conclusions regard-
ing multithreading, dynamic scheduling, and superscalar ex-
ecution, as well as cache sizing.

5.2 Limitations

Our evaluation of word-level SIMD is constrained by
compiler technology and by the vectorizability of our code.
We compile our benchmarks using a recent version of the
industry standard gcc. While gec supports vectorization and
in fact generates substantial vector code on our benchmarks,
it is not as aggressive as the best available compiler. Hence,
our results on subword SIMD, while based on realistic com-
piler technology, are not an upper bound.

Another limitation is a result of our simulation method-
ology. Because of the slow speed of simulation, we must
use reduced size inputs in order to capture overall program
behavior within the limited run time. The reduced inputs
understate the level of parallelism available. They may also
stress the memory system less than large inputs, though pre-
sumably we would be able to block the computation to alle-
viate this stress.

We do not model overheads due to synchronization at
barriers. We assume that we can implement a fast barrier
mechanism, and with our shortest threads running around
20K instructions, the relative overhead of barriers should be
small. The only thread startup cost we model is flushing
dirty data from caches; again, we assume that task queues
can be implemented efficiently. On the other hand, we do
model the cost of the non-temporal loads and stores required
for our software coherence model from Section 3.

We do not fully model the on-chip interconnect. We as-
sume that a network can be designed that allows essentially
full utilization of the global cache, which is achievable by
somewhat overprovisioning the network. Instead, we model
the interconnect as having a fixed latency and model bank
contention at the global cache.

6 Related Work

Related work to our study falls into three categories:
benchmarking of parallel applications, accelerator architec-
tures, and design space exploration for parallel architectures.

6.1 Benchmarking of Visual Computing

A number of benchmark suites has been published in
the area of parallel computing. An early effort to provide

a parallel benchmark suite was SPLASH [45], which con-
sists of numerical kernels and some parallel applications
ported to a variety of parallel architectures. Another parallel
benchmark suite is SPEComp [9], which consists mainly of
OpenMP versions of SPECfp. The 13 Dwarves [20] are a set
of kernels important to parallel applications. Our benchmark
suite differs from these general purpose parallel benchmarks
in that it is targeted at a more specific application area. We
also seek to study a new and emerging applications rather
than traditional HPC workloads.

Other early examples of benchmark suites include
MediaBench[33] and EEMBC [19]. MediaBench targets
multimedia and network applications that were emerging
applications at the time. EEMBC targets applications, in-
cluding visual applications, that are important for embedded
processors rather than high-performance processors.

More recently, Intel has identified Recognition, Mining,
and Synthesis (RMS) [17] as important application areas
for upcoming parallel architectures. RMS represents appli-
cation areas meant to capture emerging uses of computing
power, like VISBench, but consists of a broader set of ar-
eas. The PARSEC benchmark suite [11] was developed to
target these application areas. PARSEC targets a somewhat
different application area than VISBench.

Ad-hoc benchmarks have been published for specific
application areas included in our study. Benchmarks for
graphics rendering include 3DMark by Futuremark, used
to measure real-time rendering performance. The graphics
benchmarks we use in this paper differ in that they are aimed
at high-fidelity, non-real-time rendering. PhysicsBench [47]
is a benchmark suite for physics simulation which we use in
this paper.

6.2 Accelerator Architectures

Accelerator architectures are becoming more and more
important as a number of vendors have proposed or are pro-
viding accelerator chips. These make up the general no-
tion of an xPU [24], a co-processor accelerator than a tra-
ditional graphics chip. Intel has produced an 80-core VLIW
research chip[23]. IBM produces the Cell processor, used
in the PlayStation 3[22]. A number of smaller companies
have also introduced parallel accelerators, including Tilera
[5], ClearSpeed [2], and Ambric [15].

GPUs are moving in the direction of general purpose ac-
celerators. The use of GPUs as general purpose accelerators
is the subject of GPGPU research. [35] provides a survey
of this work. NVIDIA’s CUDA [8] and AMD’s CTM [7]
provide programming interfaces for GPGPU programming.

Application specific architectures have been proposed
for some of the applications we examine. Ageia produces
the PhysX chip [1], intended for physics simulation, which
consists of an array of vector cores. Another proposed
physics architectures is ParallAX [47], a heterogeneous ar-

chitecture containing both coarse and fine grained cores.
NETRA [16] was a parallel architecture for computer vi-
sion, consisting of a programmable crossbar and clusters of
processors that could operate in SIMD, MIMD, or systolic
modes. The Ray Processing Unit [46] is an accelerator for
ray tracing.

6.3 Area-efficient architecture

As such, our study extends a large body of work
on area-efficient architecture. An early example of area-
efficient architecture was the RISC project. The motivation
for RISC was to put a whole processor onto a single CMOS
chip. [39]. Likewise, the motivation for early CMP work
was to put a multiprocessor onto a single chip, thus achiev-
ing high-throughput on multiple applications [38].

A number of CMP studies have focused on area-
tradeoffs for maximizing throughput/area or through-
put/watt. In one early study, [26], Huh et. al. compare fixed-
area CMPs made up of either in-order or out-of-order cores,
and find that on SPEC workloads the out-of-order configu-
rations with fewer cores still provide higher throughput. Ku-
mar et. al. examine the microarchitectural optimization of
cores [29] and on-chip interconnects [30], again using SPEC
workloads. [10] also examines on-chip communication net-
works. [36] studied the impact of core count, cache hier-
archy, and interconnects on CMP power consumption. [34]
perform a design space exploration with core count and core
complexity under various power and area constraints. [25]
studies the cache design space for many-core CMPs.

These previous studies have influenced our methodol-
ogy for modeling processor area. However, they have gener-
ally examined a very different set of architectural parameters
and using a very different set of applications. Whereas we
examine architectural choices like multithreading and SIMD
execution, the prior work tends to emphasize interconnec-
tion networks. Both our work and the prior work examine
cache hierarchy, dynamic scheduling, and core count. The
previous work also focuses on purely general purpose archi-
tecture, and consequently uses general purpose workloads,
whereas we examine an accelerator architecture that lies be-
tween general purpose and application-specific.

7 Conclusions and Future Work

In this paper, we examine workloads in the visual com-
puting application class. We compile a benchmark suite,
VISBench, to serve as a proxy for this application class.
VISBench includes the classical visual applications of scan-
line graphics rendering, ray tracing, and video encoding. It
also includes a few emerging visual computing applications,
such as physics simulation, high quality MRI reconstruction,
and real-time face detection.

We use VISBench to examine some important high
level decisions for an accelerator architecture. We define
the accelerator model, and propose a highly parallel basic
architecture. We examine the need for synchronization and
data communication among parallel elements of the bench-
mark applications. We also examine GPU-style SIMD ex-
ecution and find that while SIMD is preferrable for some
applications, for most applications MIMD provides higher
performance.

Given these choices, we use VISBench to explore the
design space for the compute portion of the accelerator. We
analyze area versus performance tradeoffs in the design of
the individual compute cores and in the memory hierarchy.
We find that such a design, made of small, simple cores,
achieves much higher throughput than a general purpose
uniprocessor. Further, we find that a limited amount of sup-
port for ILP within each core aids overall performance. We
find that fine-grained multithreading improves performance,
but only up to a point. We find that word-level (SSE-style)
SIMD also provides a poor performance to area ratio, partic-
ularly when the VIS applications are compiled using a stan-
dard compiler with aggressive optimizations.

8 Acknowledgements

The authors acknowledge the support of the Focus Cen-
ter for Circuit & System Solutions (C2S2), one of five re-
search centers funded under the Focus Center Research Pro-
gram, a Semiconductor Research Corporation Program.

The MRI reconstruction kernel was provided by Sam
Stone, while the motion estimation kernel was provided by
Chris Rodrigues, both of the IMPACT group at UIUC.

PhysicsBench code, and in particular the custom ver-
sion used in this study, was generously provided by Tom
Yeh and Glenn Reinmann of UCLA.

Steve Lumetta, Matt Frank, and Wen-mei Hwu all pro-
vided valuable assistance in developing this project.

References

[1] AGEIA PhysX. http://www.ageia.com.

[2] ClearSpeed Technology
http://www.clearspeed.com/products/overview.

[3] MIPS32 74K. http://www.mips.com/products/cores/32-bit-
cores/mips32-74k/index.cfm.

Primer.

[4] Tensilica Diamond 570T.
http://www.tensilica.com/diamond/di_570t.htm.
[5] Tilera TILE64 Processor Overview.

http://www.tilera.com/pdf/Pro-Brief_Tile64_Web.pdf.

[6] The International Technology Roadmap for Semiconductors
2005 Edition, System Drivers, 2005.

[71 ATI CT™M Guide,
http://ati.amd.com/companyinfo/research-
er/documents/ATI_.CTM_Guide.pdf.

2007.

(8]

[91

[10]

[11]

[12]
[13]

[14]

(15]

[16]

(171

(18]

[19]
(201

[21]

[22]

[23]
[24]

[25]

[26]

CUDA Programming Guide 1.0, 2007.
http://developer.nvidia.com/ob-ject/cuda.html.

V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W. B.
Jones, and B. Parady. SPEComp: A New Benchmark
Suite for Measuring Parallel Computer Performance. Lec-
ture Notes in Computer Science, 2104, 2001.

J. Balfour and W. J. Dally. Design tradeoffs for tiled CMP
on-chip networks. In Proceedings of the 20th International
Conference on Supercomputing, pages 187-198, 2006.

C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
Benchmark Suite: Characterization and Architectural Im-
plications. Technical report, Princeton University, January
2008.

Blender.org. Blender. http://www.blender.org.

D. Bolme, M. Strout, and J. Beveridge. Faceperf: Bench-
marks for face recognition algorithms. Workload Character-
ization, 2007. IISWC 2007. IEEE 10th International Sympo-
sium on, pages 114-119, 27-29 Sept. 2007.

A. Bond. Havok FX: GPU Accelerated Physics For PC
Games. In Game Developers Conference, 2006.

M. Butts, A. M. Jones, and P. Wasson. A Structural Object
Programming Model, Architecture, Chip and Tools for Re-
configurable Computing. In FCCM ’07: Proceedings of the
15th Annual IEEE Symposium on Field-Programmable Cus-
tom Computing Machines, pages 55-64, Washington, DC,
USA, 2007. IEEE Computer Society.

A. N. Choudhary, J. H. Patel, and N. Ahuja. NETRA: A Hier-
archical and Partitionable Architecture for Computer Vision
Systems. IEEE Trans. Parallel Distrib. Syst., 4(10):1092—
1104, 1993.

P. Dubey. Recognition, Mining, and Synthesis Moves Com-
puters to the Era of Tera. Intel Technology Journal, 9(2),
2005.

A. N. Eden and T. Mudge. The yags branch prediction
scheme. In Proceedings of the 31st Annual International
Symposium on Microarchitecture, pages 69-77, 1998.
EEMBC. Embedded Microprocessor Benchmark Consor-
tium. http://www.eembc.org.

K. A. et. al. The Landscape of Parallel Computing Research:
A View from Berkeley, 2006.

W. W. Fung, I. Sham, G. Yuan, and T. M. Aamodt. Dynamic
Warp Formation and Scheduling for Efficient GPU Control
Flow. In Proceedings of the 40th Annual International Sym-
posium on Microarchitecture, December 2007.

M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins,
Y. Watanabe, and T. Yamazaki. Synergistic Processing in
Cell’s Multicore Architecture. IEEE Micro, 26(2):10-24,
2006.

J. Held, J. Bautista, and S. Koehl. From a Few Cores to
Many: A Tera-scale Computing Research Overview.

P. Hester. Multi-Core and Beyond: Evolving the x86 Archi-
tecture. AMD, Aug 2007. HotChips presentation.

L. Hsu, R. Iyer, S. Makineni, S. Reinhardt, and D. Newell.
Exploring the cache design space for large scale CMPs. ACM
SIGARCH Somputer Architecture News, 33(4):24-33, 2005.
J. Huh, D. Burger, and S. Keckler. Exploring the design space
of future CMPs. In Proceedings of the International Confer-
ence on Parallel Architectures and Compilation Techniques,
pages 199-210, 2001.

[27]

[28]

[291

[30]

(31]

[32]

[33]

[34]

[35]

(36]

[37]

[38]

391

Hwa-Joon Oh et al. A fully pipelined single-precision
floating-point unit in the synergistic processor element of
a CELL processor. [EEE Journal of Solid-State Circuits,
41:759-771, April 2006.

J. H. Kelm, I. Gelado, M. J. Murphy, N. Navarro, S. Lumetta,
and W. mei Hwu. CIGAR: Application Partitioning for a
CPU/Coprocessor Architecture. In PACT '07: Proceedings
of the 16th International Conference on Parallel Architecture
and Compilation Techniques (PACT 2007), pages 317-326,
Washington, DC, USA, 2007.

R. Kumar, D. M. Tullsen, and N. P. Jouppi. Core architec-
ture optimization for heterogeneous chip multiprocessors. In
PACT ’06: Proceedings of the 15th international conference
on Parallel architectures and compilation techniques, pages
23-32, New York, NY, USA, 2006. ACM.

R. Kumar, V. Zyuban, and D. M. Tullsen. Interconnections
in Multi-Core Architectures: Understanding Mechanisms,
Overheads, and Scaling. In Proceedings of the 32th Annual
International Symposium on Computer Architecture, 2005.
T.-J. Kwon, J. Sondeen, and J. Draper. Design trade-
offs in floating-point unit implementation for embedded and
processing-in-memory systems. In IEEE International Sym-
posium on Circuits and Systems, volume 4, May 2005.

H. A. Landman. Visualizing the Behavior of Logic Synthesis
Algorithms. In SNUG 98: Proceedings of the Synopsys User
Group Conference, 1998.

C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Medi-
aBench: A Tool for Evaluating and Synthesizing Multime-
dia and Communications Systems. In Proceedings of the
30th Annual International Symposium on Microarchitecture,
1997.

Y. Li, B. Lee, D. Brooks, Z. Hu, and K. Skadron. CMP
Design Space Exploration Subject to Physical Constraints.
In Proceedings of the 12th International Symposium on High
Performance Computer Architecture, 2006.

D. Luebke, M. Harris, J. Krger, T. Purcell, N. Govindaraju,
I. Buck, C. Woolley, and A. Lefohn. GPGPU: general
purpose computation on graphics hardware. In ACM SIG-
GRAPH, August 2004.

M. Monchiero, R. Canal, and A. Gonzlez. De-
sign space exploration for multicore architectures: a
power/performance/thermal view. In Proceedings of the 20th
International Conference on Supercomputing, pages 178-
186, 2006.

N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Op-
timizing NUCA Organizations and Wiring Alternatives for
Large Caches With CACTI 6.0. In Proceedings of the 40th
Annual International Symposium on Microarchitecture, De-
cember 2007.

K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and
K. Chang. The case for a single-chip multiprocessor. In
Proceedings of the 7th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, 1996.

D. A. Patterson and C. H. Sequin. RISC I: A Reduced In-
struction Set VLSI Computer. In ISCA ’81: Proceedings of
the 8th annual symposium on Computer Architecture, pages
443-457, Los Alamitos, CA, USA, 1981. IEEE Computer
Society Press.

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47

M. A. H. Ron Ho, Kenneth W. Mai. The Future of Wires. In
Proceedings of the IEEE, volume 89, April 2001.

M. Y. Siu. A high-performance area-efficient multifunction
interpolator. In ARITH ’05: Proceedings of the 17th IEEE
Symposium on Computer Arithmetic, pages 272-279, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

R. Smith. Open Dynamics Engine. http://www.ode.org/.

S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson,
J. Tschanz, D. Finan, P. Iyer, A. Singh, T. Jacob, S. Jain,
S. Venkataraman, Y. Hoskote, and N. Borkar. An 80-Tile
1.28TFLOPS Network-on-Chip in 65nm CMOS. In /EEE
International Solid-State Circuits Conference, 2007. Digest
of Technical Papers., February 2007.

N. Weste and D. Harris. CMOS VLSI Design: A Circuits and
Systems Perspective. Addison Wesley, 2005.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and Method-
ological Considerations. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture, pages
24-6, 1995.

S. Woop, J. Schmittler, and P. Slusallek. RPU: a pro-
grammable ray processing unit for realtime ray tracing. ACM
Trans. Graph., 24(3):434-444, 2005.

T. Y. Yeh, P. Faloutsos, S. J. Patel, and G. Reinmann. Paral-
1AX: An Architecture for Real-Time Physics. In Proceedings
of the 34th Annual International Symposium on Computer
Architecture, 2007.

