
Decoupled Architectures as a Low-Complexity Alternative to Out-of-order Execution

Neal C. Crago and Sanjay J. Patel
Electrical and Computer Engineering

University of Illinois at Urbana-Champaign
Urbana, IL USA

(crago, sjp)@illinois.edu

Abstract— In this paper we present OUTRIDERHP, a novel
implementation of a decoupled architecture that approaches
the performance of contemporary out-of-order processors on
parallel benchmarks while maintaining low hardware com-
plexity. OUTRIDERHP leverages the compiler to separate a
single thread of execution into memory-accessing and memory-
consuming streams that can be executed concurrently, which
we call strands. We identify loss-of-decoupling events which
cripple performance on traditional decoupled architectures, and
design OUTRIDERHP to enable extraction of multiple strands
and control speculation which provide superior memory and
functional unit latency tolerance. OUTRIDERHP outperforms
a baseline in-order architecture by 26-220% and Decoupled
Access/Execute by 7-172% when executing parallel benchmarks
on an 8-core CMP configuration. OUTRIDERHP performs within
15% of higher-complexity out-of-order cores despite not utiliz-
ing large physical register files, dynamic scheduling, and register
renaming hardware.

I. INTRODUCTION

Execution stalls due to memory and functional unit latency
are the most significant limiting factor for performance in
parallel workloads in multicore systems. We find in our
eight parallel benchmarks that removing stalls due to memory
latency increases performance by nearly 230% on average,
while idealizing functional unit latency improves perfor-
mance by an additional 70%. The performance impact of
both the memory and functional unit latencies indicates the
importance of efficient latency tolerance mechanisms.

Out-of-order (OOO) processors enable functional and
memory latency tolerance by executing instructions out-of-
order with respect to one another. However, OOO requires
significant hardware structures such as associative instruction
windows, large register files, register renaming, and load
store queues. To combat this large complexity, techniques
have been proposed using less complex hardware at some
performance cost [1], [2], [3]. However, these approaches
still leverage significant hardware such as register renaming
and instruction windows to buffer in-flight instructions.

II. DECOUPLED ARCHITECTURES

Traditional decoupled architectures divide the memory-
access and memory-consuming instructions into separate in-
struction streams called strands, which execute in different
hardware contexts and communicate data and control flow
decisions with one another [4]. Decoupling enables the

!"#$"%&"

'()#*+",-./*0"1/*(2)"

3#)45/(",-./*0"1/*(2)"

3#-/*#6"76#8",-./*0"1/*(2)"

'()#*+"9(4(-:(-;("

3#)45/("9(4(-:(-;(""

1/266"95("/#"<=9"

1>"""1!" 1>"""1!" 1>"""1!" 1>"""1!"

3#4+*?@A/"B"C(26"30"3*2@#"%>!!"
"

1>"""1!"

C#"<=9" '()#*+",-:?*(;D#-"
<=9"

3#-/*#6"76#8"
<=9"

75-;D#-26"E-?/""
<2/(-;+"<=9""

F?
)
("

Fig. 1. Loss-of-decoupling (LOD) events that can severely limit perfor-
mance for traditional two-strand decoupled architectures such as DAE.

memory-accessing strands to continue executing while the
memory-consuming strands wait on data from memory, thus
tolerating memory latency. Decoupled architectures execute
instructions out-of-order, but this parallelism is extracted by
the compiler rather than in hardware, leading to significantly
simpler hardware similar to in-order designs.

Although decoupled architectures enable memory latency
tolerance, potential performance improvement is limited due
to loss-of-decoupling (LOD) events which result from inter-
and intra-strand dependences. Past work has investigated han-
dling memory indirection LOD [5]. However, data-dependent
control flow causes memory-accessing strands to block and
wait for the control flow decision, reducing the benefit
of decoupling. We also identify LOD caused by exposed
functional unit latencies, which reduce the rate at which
a memory-consuming strand can consume data from the
FIFO queue, causing the producing memory-accessing strand
to eventually stall when the data queue becomes full. We
address these LOD events in our high-performance decoupled
architecture OUTRIDERHP.

III. ARCHITECTURE AND CODE PARTITIONING

Figure 2 presents the OUTRIDERHP architecture. In ad-
dition to hardware required for an in-order processor, OUT-
RIDERHP includes additional low-complexity hardware such
as small register files, data queues for communication, and a
memory access unit (MAU) for multiple outstanding memory
requests. To reduce LOD due to data-dependent control flow,
we provide control speculation through checkpointing. Mem-
ory indirection and functional unit latency LOD is avoided
through extracting additional strands.

!"#$%&"'()$*"%(

+,-./"(

0".12"(

0,-./"(

+34"4"%(

56".4&"(7$%%(849"'(

:1-2(849"'%(

;&1'"(849"'(

7"<1'=((
>.."%%(?@$&(

A*1B-*(C-'DD1@"2(
0-&-(34"4"%(

E(1F(GH(,1I='$#/&(J(K"-*(,L(,'-#1(GMNN(
(

083(

,/".OI1$@&(

Fig. 2. OUTRIDERHP expands a traditional in-order pipeline with instruc-
tion queues, data queues, a memory access unit, and separate register files.

We build upon the partitioning scheme from [5]. OUTRID-
ERHP extracts strands from the original thread by examining
the dependency graph and partitioning the program along
memory-access and memory-consumption lines. Memory in-
direction LOD is avoided by splitting the original memory-
accessing stream into multiple strands by separating depen-
dent memory accesses, with the goal of having at least one
strand without an LOD event. To facilitate functional unit
latency tolerance, we split chains of floating point instruction
into separate strands along producing and consuming lines,
similar to the memory dependence partitioning.

We enable control speculation through checkpointing the
register file, data queue tail pointers, and MAU tail pointers
using SRAM shadow-bitcells [6] to reduce overhead. When
an instruction in a memory-accessing strand reaches a branch
that requires data from a memory-consuming strand, The
memory-accessing strand enters a speculative mode. The
waiting branch instruction and the prediction is deferred to
a special FIFO queue known as the deferred branch queue
(DBQ), a checkpoint is made of the strand’s state and the
strand speculatively continues on the predicted path provided
by the branch predictor. When the correct control flow
decision is available from the memory-consuming strand, the
prediction is compared and the state is restored from the
checkpoint if a misprediction occurred.

IV. EVALUATION

We compare OUTRIDERHP with baseline in-order, DAE
[4], and both contemporary high-performance (OOO-HP)
and complexity effective (OOO-CE) architectures [1]. The
simulator is execution-driven and models an 8-core CMP
architecture with three levels of cache hierarchy. Each base-
line core is four-wide issue in-order with private 32KB L1
caches and a RISC instruction set. The eight cores share a
unified 512KB L2 cache and the 4MB L3 Cache which is
connected to memory controllers and offchip DRAM. The
OOO processors have a 256-entry physical register file, a
128-entry ROB, and a 128-entry instruction window either
unified associative lookup (OOO-HP) or 8-way dependence-
base steering (OOO-CE). Both DAE and OUTRIDERHP has
a 16-entry register file per strand and a 64-entry partitioned

data queue, while OUTRIDERHP supports up to 4 strands
and has 2 checkpoints for control speculation.

For evaluation, we use eight optimized parallel kernels
written using the task queue model from Rigel [7]. The
benchmarks include conjugate gradient linear solver (cg),
columbic potential with cutoff (cutcp), 2D fast fourier
transform (fft), 2D stencil (heat), k-means clustering
(kmeans), mergesort (merge), mri reconstruction (mri),
and edge detection (sobel).

!"#$%&&'(#$)*$+%,-#'

.'*)'/0'1*23$4567'8'9#%&'1:'1$%5*'/;<<'
'

0
0.5

1
1.5

2
2.5

3
3.5

CG CUTCP FFT HEAT KMEANS MERGE MRI SOBEL HMEAN N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Im

pr
ov

em
en

t INORDER

DAE

OOO-CE

OUTRIDER

OOO-HP

Fig. 3. Overall performance of 4-wide in-order baseline, DAE, OUTRID-
ERHP architecture, and OOO designs, both high-performance (OOO-HP)
and complexity-effective (OOO-CE).

Figure 3 presents the overall performance of the evaluated
architectures. On average, OUTRIDERHP outperforms DAE
by 54% and the in-order baseline by 92%. Additionally, OUT-
RIDERHP performs within 15% of OOO-HP, and on par with
OOO-CE, despite not having hardware register renaming,
dynamic scheduling, and large instruction windows. OUT-
RIDERHP actually outperforms OOO on cg and heat by
utilizing non-blocking strands instead of instruction windows
which fill up quickly in cache-miss intensive applications. We
find that OOO instruction windows mostly benefit control and
compute intensive codes with long floating-point dependency
chains such as in mri, and is the single-most the reason
for the gap between OOO processors and OUTRIDERHP.
However, by extracting additional strands, OUTRIDERHP can
still tolerate some degree of floating-point unit latency and
even improves performance greatly over DAE on the cutcp
and mergesort benchmarks through utilizing control spec-
ulation.

REFERENCES

[1] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-effective
superscalar processors,” in Proc. of the 24th Intl. Symp. on Computer
Architecture, 1997, pp. 206–218.

[2] F. Tseng and Y. N. Patt, “Achieving out-of-order performance with
almost in-order complexity,” in Proc. of the 35th Intl. Symp. on
Computer Architecture, 2008, pp. 3–12.

[3] A. Hilton, S. Nagarakatte, and A. Roth, “iCFP: Tolerating all-level cache
misses in in-order processors,” IEEE Micro, vol. 30, no. 1, pp. 12–19,
2010.

[4] J. E. Smith, “Decoupled access/execute computer architectures,” in Proc.
of the 9th Intl. Symp. on Computer Architecture, 1982, pp. 112–119.

[5] N. C. Crago and S. J. Patel, “Outrider: efficient memory latency
tolerance with decoupled strands,” in Proc. of the 38th Intl. Symp. on
Computer Architecture, 2011, pp. 117–128.

[6] O. Ergin, D. Balkan, D. Ponomarev, and K. Ghose, “Increasing proces-
sor performance through early register release,” in Proc. of 22nd IEEE
Intl. Conf. on Computer Design, 2004, pp. 480 – 487.

[7] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago, W. Tuohy,
A. Mahesri, S. S. Lumetta, M. I. Frank, and S. J. Patel, “Rigel:
An architecture and scalable programming interface for a 1000-core
accelerator,” in Proc. of the 36th Intl. Symp. on Computer Architecture,
2009, pp. 140–151.

