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Abstract

Currently, GPUs and data parallel processors leverage
latency tolerance techniques such as multithreading and
prefetching to maximize performance per Watt. However,
choosing a technique that provides energy-efficiency on a
wide variety of workloads is difficult, as the type of latency
to tolerate, required hardware complexity, and energy con-
sumption is directly related to application behavior. After
qualitatively evaluating five commonly used latency toler-
ance techniques, we develop a hybrid technique utilizing
multithreading and decoupled execution to maximize per-
formance while minimizing hardware complexity and en-
ergy consumption across a wide variety of workloads.

We compare our hybrid technique with the five commonly
used techniques on a 1024-core data parallel processor
by performing a comprehensive design space exploration,
leveraging detailed performance and physical design mod-
els. By intelligently leveraging both decoupled execution
and multithreading, our hybrid latency tolerance technique
is able to improve energy-efficiency by 28% to 89% over any
single technique on data parallel benchmarks. Compared
to other combinations of latency tolerance techniques, we
find that our hybrid latency tolerance technique provides
the highest energy-efficiency by over 26%.

1 Introduction

Energy efficiency is a growing concern in the field of
computer architecture. While the number of transistors is
expected to continue to scale with Moore’s law for at least
the next five years, the “Power wall” has brought the end of
single-core processor performance scaling. As a result, im-
proving throughput performance has become a main focus
of the community and current GPU and data parallel pro-
cessors utilize tens to hundreds of simple cores on a single
chip to maximize performance per Watt [14].

To maximize the throughput performance of GPU and
data parallel processors, latency tolerance techniques are
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implemented to keep functional units busy. However, while
memory and functional unit latency tolerance has been an
active area of research, application behavior drastically af-
fects the performance and energy consumption of a given
technique, making it less clear which technique should be
selected. Current data-parallel processors such as GPUs
typically focus on multithreading, which has proven to be
an effective way to improve throughput performance. How-
ever, GPUs and data parallel processors are now adding
caches to improve programmability and can suffer the ef-
fects of cache contention, a significant performance and en-
ergy pitfall. Overall, to reach the energy efficiency goals
of future 1000-core data-parallel processors, the choice of
latency tolerance technique needs to be revisited.

In this work, we evaluate the energy efficiency and
suitability of hardware prefetching, out-of-order execution,
multithreading, hardware scout prefetching, and decoupled
execution for 1000-core data parallel processors. After
qualitatively discussing the functionality and tradeoffs of
each technique, we propose a hybrid technique that com-
bines multithreading and decoupled execution. While mul-
tithreading and decoupled execution in isolation have per-
formance pitfalls on different common code patterns, these
pitfalls can be avoided when the techniques are combined
to provide robust energy efficiency across a wide variety of
workloads while minimizing hardware complexity. Our hy-
brid technique focuses primarily on decoupled execution to
provide latency tolerance, and falls back to multithreaded
execution when decoupling is not useful.

For the purpose of our evaluation, we developed a com-
prehensive design space exploration framework with high-
fidelity performance and physical design models that allow
fair comparison of our proposed hybrid technique with the
five commonly used techniques. To further support the fi-
delity and fairness of the design space exploration, energy-
efficient and complexity-effective versions of each latency
tolerance technique are implemented. The development of
the detailed models for each latency tolerance technique is a
significant contribution of this work, and leverages a cycle-
accurate 1000-core simulator and RTL synthesis and ana-
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Figure 1: Categorization of latency tolerance techniques.
Highlighted techniques are considered in this work.

lytical SRAM models for a 45Snm CMOS manufacturing
process. Additionally, microbenchmarks are developed to
illustrate important code patterns for 1000-core data paral-
lel processors and evaluate each latency tolerance technique
on isolated application behavior.

We find our hybrid latency tolerance technique avoids
the pitfalls of other techniques and can provide 28% to
89% better energy efficiency than a single technique alone.
Out-of-order, multithreading and decoupled techniques pro-
vide similar levels of energy efficiency on average across
data parallel benchmarks. While decoupled execution and
multithreading have significantly lower hardware complex-
ity than out-of-order, energy pitfalls due to application
behavior limit their energy efficiency on average. Even
when considering other possible combinations of hardware
prefetching, out-of-order execution, multithreading, hard-
ware scout, and decoupled execution, we find that our hy-
brid latency tolerance technique provide the highest energy
efficiency by over 26%.

2 Goals and Latency Tolerance Techniques

The peak throughput performance of 1000-core data par-
allel processors is fundamentally limited by chip area and
power budgets. An appropriate latency tolerance tech-
nique maximizes performance improvement while mini-
mizing additional cost. Specifically, added hardware com-
plexity, energy consumption, and applicability to a variety
of workloads must be considered.

We compare five latency tolerance techniques for future
1000-core data-parallel processors while advocating for the
hybrid technique we propose. As the baseline, we evaluate
the ability of hardware prefetching to tolerate memory la-
tency. Figure 1 shows that we compare hardware prefetch-
ing to a wide range of techniques including instruction-level
parallelism (ILP) techniques that are dynamic and leverage
the compiler, and thread-level parallelism (TLP) techniques
that provide dynamic prefetching or execute another thread
of execution. For each technique, we discuss the high-level
operation, applicability for latency tolerance, and concerns
for implementation on 1000-core data parallel processors.

Hardware Prefetching: Prefetching data into the caches
can help tolerate memory latency, which can otherwise
dominate memory-intensive data parallel applications. To
minimize hardware complexity, we consider next-line and
stride-based prefetching at the core level, which prior re-
search has shown to perform well on GPUs and manycore
[5, 13]. When the prefetch tables are sized appropriately
for data-parallel workloads, both of these approaches re-
quire a relatively low amount of additional hardware. The
largest concern with prefetching is inaccurately predicting
the memory access stream, and prefetching the data either
too early or too late. If an application’s memory-stream is
irregular or unpredictable, cache pollution can occur and in-
crease the number of cache accesses and energy consump-
tion. Additionally, prefetching can only provide memory la-
tency tolerance, and cannot tolerate functional unit latency.

Out-of-Order Execution: Out-of-order (OOO) cores im-
prove performance by leveraging hardware structures to dy-
namically execute instructions in a single thread out-of-
order. These additional hardware structures include large
physical register files, reorder buffers, and register renam-
ing. When sized appropriately, functional unit latency and
even memory latency can be tolerated by dynamically exe-
cuting non-blocked instructions in the instruction window.
The extra hardware complexity required for out-of-order ex-
ecution can be significant, both in terms of chip area and
energy consumption. If the application experiences long
memory access latencies, the additional hardware complex-
ity needed to increase the number of inflight instructions to
tolerate the latency can be prohibitive.

Multithreading: In contemporary data parallel proces-
sors, multithreading is often used to interleave multiple in-
order threads of execution and provide both memory and
functional unit latency tolerance [14, 21]. The hardware
complexity for multithreading can be relatively low, and
generally requires additional register files and scratch space
to be added for each thread. A significant concern with mul-
tithreading is cache contention due to application behavior
and shared caches. If the active data set for each thread is
too large or the memory addresses do not map into the cache
well, contention between threads can occur, causing perfor-
mance degradation and increased energy consumption.

Hardware Scout Prefetching: Hardware scout, also
known as runahead execution, dynamically generates
prefetches to tolerate memory latency [4, 7]. The hard-
ware scout thread operates as a separate thread of execution
which speculatively preexecutes the main thread to generate
prefetches while the core is otherwise stalled during cache
misses. The potential benefit of the hardware scout style of
prefetching is improved prefetch accuracy and timeliness.
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However, preexecuting the instruction stream requires sig-
nificant extra energy consumption, as each instruction pre-
executed requires additional energy to be spent in instruc-
tion fetch, the register file, and accessing the caches. Simi-
larly to other prefetching techniques, hardware scout cannot
be used to tolerate functional unit latency.

Decoupled Execution: Recently, there has been renewed
interest in decoupled execution for improving performance
in GPUs and manycore [6, 1]. Decoupled execution lever-
ages the compiler to partition a single thread of execution
into separate memory-accessing and memory-consuming in-
struction streams called strands, which communicate
data and control flow decisions with one another through
FIFO data queues [22]. Decoupled execution provides sig-
nificant memory latency tolerance, as instead of stalling
when a cache miss occurs, the memory-accessing strand
can execute ahead, executing independent instructions in a
similar manner to OOO execution. However, decoupled ar-
chitectures have significantly less complex hardware due to
placing more complexity in the compiler.

While recent work has presented solutions to perfor-
mance limitations, such as memory indirection and func-
tional unit latency tolerance [6], the lack of ability to
tolerate data-dependent control flow remains a concern.
Data-dependent control flow occurs when the memory-
consuming strand is responsible for determining the next
basic block, which causes the memory-accessing strand to
not be able to execute ahead and stall. If an application has
frequent occurrences of data-dependent control flow, these
stalls can severely limit the potential performance benefit of
decoupled execution. Additionally, the instruction overhead
for maintaining separate fetching and executing instruction
streams leads to additional energy consumption.

3 Hybrid Latency Tolerance

An ideal latency tolerance technique has low hardware
cost and provides robust energy efficiency across a wide
variety of workloads. However, each of the commonly
used techniques either has high complexity or has a perfor-
mance or energy pitfall under certain application behavior.
To move closer to a robust technique, different techniques
could be combined together. However, combination must
be performed in a thoughtful manner, as naively combin-
ing techniques together can result in significant additional
hardware complexity and little benefit.

To minimize additional hardware overhead and energy
consumption, we propose combining multithreading and
decoupled execution. The major differences in applicability
across workloads enables such a combination to provide ro-
bust performance on large variety of workloads. Addition-
ally, both techniques provide both memory and functional
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Figure 2: Proposed core architecture. Each context is con-
figurable as a decoupled strand or full thread of execution

unit latency tolerance and require similarly low hardware
requirements. As a result, we can avoid the significant hard-
ware complexity of out-of-order execution, as well as the
speculation waste and lack of functional unit latency toler-
ance of both hardware prefetching and hardware scout.

3.1 Intelligently Combining Techniques

The straightforward approach in combining multithread-
ing and decoupled execution would be to architect the hard-
ware to support both simultaneously. To achieve the full
combination of a four-strand decoupled and four-way multi-
threaded core, support for sixteen strand contexts including
register files, instruction queues, and data queues must be
added, resulting in a large and possibly prohibitive increase
in hardware complexity.

Instead of naively combining these two techniques, we
consider the use case for such a hybrid with the goal of in-
telligently combining multithreading and decoupled execu-
tion. In general, each technique can operate efficiently on its
own, with the exception of workloads with data dependent
control flow and those that experience cache contention.
Another interesting observation is that these two different
techniques use similar hardware in the form of strand and
thread contexts. These observations lead us to propose a
hybrid technique with the ability to switch between modes
of execution. In doing so, hardware can be used efficiently
while enabling robustness on a larger variety of workloads.

3.2 Architecture and Execution Modes

Figure 2 presents our low-complexity core architecture
used to implement hybrid latency tolerance. A total of
four contexts can be supported, each of which can either
be a strand context from decoupled execution or a hardware
thread context. Unlike prior decoupled architecture propos-
als [22], all strands interleave their execution on a single
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pipeline. To facilitate strand communication during decou-
pled execution, data queues are provided using the virtual-
ization technique described in [6]. Finally, each context has
support for issuing multiple non-blocking load instructions.

The architecture supports three execution modes:

e Decoupled Mode (1 thread of up to 4 strands)

e Multithreaded Mode (4 threads of 1 strand each )

e MT-Decoupled Mode (2 threads with 2 strands each)
3.3 Selection of Execution Mode

The execution mode for a data parallel task is selected
based upon application behavior to improve performance
and to avoid energy waste. This paper focuses on automatic
static selection, which we find performs within 8% on av-
erage of oracular static selection. While dynamic selection
with runtime and operating system support is left for future
work, we believe the potential benefit of implementing it to
be relatively low. Our selection scheme primarily focuses
on leveraging decoupled execution, and then falling back to
multithreading when data-dependent control flow exists and
decoupling is not useful.

The compiler uses the following selection algorithm:

o If data-dependent control flow exists in the inner loop

of a task, multithreaded execution mode is chosen.

e Otherwise, if the number of decoupled strands ex-
tracted from the task is only two, the multithreaded
decoupled execution mode is chosen.

e Otherwise, decoupled execution mode is chosen.

At the end of the selection process, one version of task
code is generated. Although we utilize our knowledge of
the application to statically pick the execution mode, our
scheme can also can be implemented into a compiler by de-
tecting data-dependent control flow.

3.4 Context Scheduling Algorithm

An architecture supporting both decoupled execution
and multithreading together must decide how the strands
from different threads should interact and share resources,
such as the execution pipeline. The instruction scheduling
algorithm must intelligently decide which context should
get scheduling priority among a pool of strands from differ-
ent threads, in a way that promotes fairness and thereby im-
proves throughput and utilization of the execution pipeline.

When our proposed hybrid technique is in
multithreading-only mode, round-robin is used to pro-
vide fairness by evenly distributing priority among the
threads. However, when either of the two decoupled modes
is active, deciding which strand of which thread should be
given priority is less clear. For example, either the leading
strand (executing furthest ahead) or the following strand

(executing furthest behind) of a thread could be prioritized.
Prioritizing the leading strand of a thread would enable that
strand to execute far ahead and support a greater amount
of latency tolerance. However, prioritizing the leading
strand can cause the data queues to fill up, and artificially
starve that strand from issuing instructions until there is
free space in the data queue. On the other hand, prioritizing
the following strand of a thread enables the data queues
to be kept empty, with the downside being the potential
reduction in latency tolerance ability.

In practice, the fullness of a data queue is a dynamic
property that depends on runtime behavior, while many
scheduling algorithms are fixed and do not change over
time. Therefore, we combine static scheduling algorithms
to create a novel dynamic algorithm. The algorithm priori-
tizes strands with full data queues first, then leading strands
from each thread, followed by subsequent strands.

The dynamic instruction scheduling algorithm:

e Strands with full data queues get the highest priority.

e Otherwise, round robin among the threads considering
only the leading strand.

e Continue to round robin among the threads by consid-
ering only the next strand.

e Finish when following strands have been considered.

4 Modeling Methodology

To more fairly compare and evaluate the performance
and energy efficiency of our hybrid technique and the five
commonly used techniques, we perform a comprehensive
design space exploration varying chip and core configu-
rations. We build detailed performance models of each
latency tolerance technique and a detailed physical de-
sign model generated using synthesis and analytical SRAM
models for a 45nm CMOS manufacturing process to de-
termine benchmark runtime, dynamic energy consumption,
and leakage energy consumption. Each latency tolerance
technique is individually implemented with complexity-
effective and energy-efficient hardware to avoid unfair com-
parisons. The runtime and energy values for a single tech-
nique are then analyzed to determine the Pareto-optimal
configurations with respect to energy-efficiency.

4.1 Modeling Infrastructure

Figure 3 presents our flow for evaluating the perfor-
mance, area, and energy consumption of the techniques.
Each architectural configuration’s performance is measured
using RigelSim, a cycle-accurate performance model, while
the associated area and energy costs of the design are based
on models derived through a combination of RTL synthesis
and CACTI 6.0 [16].
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Figure 3: Energy, area, and leakage generation workflow.

Performance Modeling

We evaluate the latency tolerance techniques on Rigel, a
1024-core data parallel processor, with cores and caches or-
ganized into a 3-level cache hierarchy [10]. Each core has
private L1 instruction and data caches, a single-precision
floating point unit, and a MIPS-like RISC instruction set.
Eight cores form a cluster and share a unified L2 cache,
with lower access latency than the L3 cache. All 128 clus-
ters share a banked L3 cache via an on-chip interconnec-
tion network, which is connected via GDDRS memory con-
trollers to off-chip DRAM.

The latency tolerance techniques compared in the de-
sign space exploration have been implemented in Rigel-
Sim, an execution-driven simulator that models the cores,
caches, memory controllers, and DRAM. The core models
the structure of the pipeline, including pipeline stages, func-
tional units, and storage components such as branch predic-
tion tables, register files, reorder buffers, load-store units
and instruction windows. Additionally, each memory struc-
ture is modeled with a specific number of read and write
ports in the simulator.

Physical Design Modeling

For modeling the energy and area of each design, a
CMOS 45 nm manufacturing process is used. CACTI is
used to model the register files, the caches (L1, L2 and L3),
and other storage components (BTB, instruction queues,
etc.); synthesized Verilog is used for all other major core
structures such as functional units, pipeline latches, and by-
pass logic. As area and energy of a module depends on
how aggressive the implementation is, each chip component
was generated for a range of delays. Specifically, CACTI
was modified to output the energy-area-delay points of all
configurations considered during its internal design space
exploration, and our synthesis toolflow was used to gener-
ate different circuit implementations at different target clock
frequencies. We chose the most efficient implementation of
a circuit based on the target frequency chosen during the
design space exploration.

To model the effect of the operating voltage, we used
voltage scaling equations extrapolated from SPICE simula-
tions of 45 nm circuits. These equations model the impacts
of scaling voltage on circuit delay, energy consumption, and
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Figure 4: Average energy-efficiency improvement of each

technique using tuned implementations.

leakage power. We then tied these voltage scaling equations
together to the Pareto-optimal energy, area, and delay val-
ues for each of our modules. Linking these values into the
core pipeline model defined by the simulator, we were able
to approximate the operating frequency of each core config-
uration under different voltage operating points.

The final step in creating the energy model requires link-
ing the energy costs at the module level with architectural
activity factors to generate dynamic energy consumption.
The simulation infrastructure outputs the activity for each
component in the core and memory system, measured by
counting the number of accesses to the structure. Reads,
writes, and associative lookups are counted for storage com-
ponents, while the number of active cycles are counted for
all other structures. These activity factors are then used with
the module configurations and the selected operating volt-
age to determine area, dynamic energy and leakage.

4.2 Efficient Technique Implementation

For each latency tolerance technique, we implement
energy-efficient extensions to improve these techniques
over performance-focused implementations.  Figure 4
presents the impact on energy efficiency when deploying
these techniques on a 1024-core data parallel processor
with a two-wide issue core and the data parallel bench-
marks found in Section 5. The extensions improve hardware
prefetching by 8%, out-of-order execution by 36%, multi-
threading by 23%, hardware scout by 32%, and decoupled
by 8% on average across the benchmarks. Additional de-
tails on methodology is found in Section 5.

Hardware Prefetching: In our design space exploration,
we consider both next-line and stride-based prefetching [5].
Table-based stride prefetching is used to improve energy-
efficiency by better predicting the access stream and im-
proving timeliness over next-line prefetching. Software can
statically switch off prefetching if it is not useful.

Out-of-Order: ~ We include complexity-effective hard-
ware to improve energy efficiency. To simplify the in-
struction window, we include dependence-based instruction
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steering which uses simple hardware FIFOs [18]. We also
enable aggressive partitioning of the core into floating point
and integer pipes to reduce physical register file complex-
ity, and partition the reorder buffer and register renaming
free list to reduce the number of read and write ports [24].

Multithreading: We implement simultaneous multi-
threading to better utilize issue slots as issue width in-
creases. Cache set hashing is used on the L1 and L2 cache
to more uniformly distribute memory addresses and reduce
the effects of cache contention between threads [8, 11]. A
bitwise XOR hashing function on the memory address is
used with low additional hardware complexity. Software
can statically configure the number of active threads on each
core to further reduce the effects of cache contention.

Hardware Scout:  The extra energy spent preexecuting
the instruction stream can be improved by avoiding preex-
ecution of useless instructions [17]. For example, floating
point instructions do not generally contribute to generating
prefetches and can not be executed to reduce functional unit
energy consumption. We also eliminate short scout sessions
and avoid overlapping scout sessions.

Decoupled Execution:  The instruction overhead found
in decoupled architectures can be partially alleviated by re-
ducing the complexity for each strand context. We therefore
reduce the number of instructions that each strand can issue
per cycle, leading to a lower number of read and write ports
in the register files, instruction and data queues.

5 Experimental Setup

We present the parameters, microbenchmarks, and data
parallel benchmarks for the design space exploration. The
design space is listed in Table 1. We vary all major com-
ponents in the 1024-core Rigel chip including issue width,
number of functional units, and cache sizing. We also vary
specific parameters for each latency tolerance technique.

5.1 Microbenchmarks

We utilize microbenchmarks to isolate five key code
patterns found in data-parallel applications: compute-
intensive, data-dependent control flow, data-sharing in-
tensive, pointer-chasing, and memory-streaming inten-
sive. These patterns stress the ability to achieve energy-
efficiency, such tolerating functional unit and memory la-
tency and exploiting locality in the cache hierarchy. We note
that this collection is not a comprehensive taxonomy; rather
these are the patterns that we find most significantly affect
the techniques we evaluate. Additionally, these patterns are

Shared Parameters
Target Frequency
Operating Voltage
Base Core Pipeline

500 MHz - 2.5 GHz
0.7V - 1.4V
8 stage - Fetch, Decode,
Schedule/RF, Execute (4), Writeback
Issue Width 1-4
BTB 8-64 entry
GShare Table 32-256 entry
LDQ, STQ, MissQueue LDQ/STQ 8-32 entry; MQ 4-16 entry
L1I (2-way), L1D (4-way) L1I2kB, 1 cycle; L1D 1-4kB, 1 cycle
L2 (8-way) 32-128KkB, 4 cycle, shared by 8 cores
L3 (32-bank, 4-way per bank) 4MB total, 128kB per bank,
32 cycle access through on-chip network
DRAM 8 Channels GDDR 5
Hardware Prefetch Parameters
Nextline Prefetching
Stride Prefetching Table
Out-of-Order Parameters
Reorder Buffer
Instruction Window
Physical Registers

1-4 cache lines
8-32 Entries

32-128 entry unified or partitioned
16-32 entry Assoc. or (16) 16-entry FIFOs
128-256 Unified or Split FP/INT
2-4 SMT threads

16-128 entry partitioned data queues

Multithreaded Parameters

Decoupled Parameters

Table 1: Design space exploration parameters.

not mutually-exclusive, and we find in practice multiple pat-
terns can and are found in applications.

Compute-intensive: The compute-intensive pattern iso-
lates the ability to tolerate functional unit latency. Code
with this pattern usually consists of dependent chains of
arithmetic and floating-point instructions as opposed to
memory instructions. The microbenchmark consists of a
loop that performs iterations of floating point computation
on values in the register file. Each iteration of the loop ex-
ecutes a collection of floating point instructions connected
in a tree-like structure where each stage fans into the next,
much like a reduction operation. While there is ILP that
can be exploited at each stage in the tree, there is latency
that must be tolerated to keep the core from stalling.

Data-dependent Control Flow: The data-dependent
control flow pattern occurs when the next basic block to
execute cannot be known ahead of time. To continue execu-
tion under long instruction stalls, either another instruction
stream must execute or speculative execution performed.
The microbenchmark consists of a loop where each itera-
tion calculates a value, which is then compared to a thresh-
old. If the calculated value is above the threshold, a running
sum is updated. Whether the running sum will be updated
or not corresponds to different control paths. The threshold
conditional branch is statically biased to 75% taken.

Data-sharing intensive: Memory-intensive code with
high reuse exhibits a large number of memory accesses fa-
vorable to a cache hierarchy. Peak performance is achieved
by fitting the dataset of a thread into the cache. Sharing
intensity, the fraction of data shared between threads, im-
pacts the amount of cache space required to limit cache
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contention. The data-sharing microbenchmark consists of
a loop dominated by memory accesses. Each thread of exe-
cution has a vector dataset which is iterated over continually
in aloop. The dataset size is set such that data for 8 baseline
threads in a cluster can fit in the L2 cache without aliasing.

Pointer-Chasing: The pointer-chasing pattern occurs
when an application is dominated by memory accesses used
to traverse nodes in linked-lists or graphs. Each node is a
dynamic element whose address is not known ahead of time
and can be highly unpredictable, requiring the inspection of
pointers in the parent node’s data structure. The pointer-
chasing microbenchmark is a linked-list traversal, with a
small number of floating point instructions used to update
a value in each node traversed. Each task operates on a sep-
arate linked-list and each node aligns to a cache line irregu-
larly skewed across the address space, simulating the effects
of dynamic memory allocation and linked list manipulation.

Memory-streaming intensive: The memory-streaming
pattern isolates the ability to tolerate large amounts of mem-
ory latency. The pattern exhibits a large number of memory
accesses of data that exhibit low reuse and often miss in
the cache hierarchy, exposing long memory access laten-
cies. The microbenchmark uses a simple vector addition
code to model the memory-streaming code pattern. Using
this code base, we model the situation where the dataset is
resident in the L3 cache, enabling access latencies in the
tens of cycles and a high amount of available bandwidth.

5.2 Data Parallel Benchmarks

We use a set of nine optimized parallel kernels from sci-
entific and visual computing applications implemented for
Rigel. The benchmarks exhibit a high degree of parallelism
and are written using a task-based, barrier-synchronized
work queue model implemented fully in software. The
benchmarks include black scholes (blackscholes),
conjugate gradient linear solver (cg), coloumbic potential
with cutoff (cut cp), dense matrix multiply (dmm), 2D fast
fourier transform (£ £t ), 2D stencil computation (heat), k-
means clustering (kmeans), medical image reconstruction
(mri), and image edge detection (sobel). Each bench-
mark is executed for at least one billion instructions.

Each benchmark is tuned at the source level using loop
unrolling and software pipelining techniques, and then com-
piled using LLVM with optimizations turned on, providing
significant latency tolerance over naive code. For decou-
pled execution and the hybrid technique proposed in this
work, the kernels are decomposed into strands as found
in [6], with support for extracting more memory-consuming
strands for functional unit latency tolerance. The partition-
ing scheme is implemented into a binary rewriter, which

automatically generates decoupled code by decompiling the
binary and applying the partitioning scheme.

6 Hybrid Technique Architecture Evaluation

6.1 Scheduling Algorithm Evaluation

Figure S5a presents the evaluation of the instruction
scheduling algorithms for our hybrid technique. Round-
robin scheduling across all strands on a single core is con-
sidered as the baseline for comparison. Each benchmark is
run on a fixed configuration 1024-core system with a two-
wide issue core and the smallest cache sizes. As expected,
the baseline round-robin scheme does not perform the best
on any of the benchmarks. However, the impact of choos-
ing one scheduling algorithm over another is quite signifi-
cant and can affect performance more than 15%. Choosing
a static scheduling policy gives mixed results as prioritizing
the leading strand causes significant starvation on £ft and
mri due to full data queues, while prioritizing the following
strand significantly reduces the ability to execute ahead and
tolerate memory latency on cg,cutup, dmm, and sobel.
Our dynamic scheduling algorithm improves performance
by nearly 5% on average and in some cases improves upon
the static algorithms, by avoiding the performance pitfall
case when the data queues are full while enabling the lead-
ing strands to execute as far ahead as possible.

6.2 Static Mode Selection Evaluation

We evaluate the ability of our static scheme to select
the best execution mode for our hybrid technique by com-
paring the Pareto optimal design points from our full de-
sign space exploration. Figure 5b compares our hybrid la-
tency tolerance technique with an oracle statically choos-
ing the best hybrid execution mode. Overall, we find that
our static algorithm performs within 8% of the oracle. Our
scheme is able to statically choose the best mode on many
of the benchmarks, with the exception of cutup, dmm, and
kmeans. In these benchmarks, choosing multithreading
over decoupled (dmm), two-way multithreaded decoupled
over three-strand decoupled (kmeans) and two-way mul-
tithreaded decoupled over multithreading (cutup) can im-
prove energy-efficiency. While dynamically choosing the
execution mode is left for future work, we find that the im-
pact on energy efficiency is likely to be relatively low.

6.3 Limited Execution Mode Evaluation

We evaluate our decision to restrict our hybrid technique
to three fixed execution modes by comparing with full com-
binations of decoupled execution and multithreading. Fig-
ure 5c presents the performance of our hybrid technique and
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against alternatives and an oracle. Relative performance of our hybrid technique and naive fixed configurations (c).

fixed configurations supporting two and four-strand decou-
pled execution (DEC2, DEC4) and two and four-way multi-
threading (SMT2, SMT4). The experiment is performed on
a fixed configuration 1024-core system with a two-wide is-
sue core and the smallest caches sizes. For each benchmark,
the best configuration of decoupling and multithreading on
each alternative design is presented. On average, our hybrid
technique performs within 10% of the higher-complexity
designs that must support significantly more hardware con-
texts. In the case of cutup, dmm, and kmeans the abil-
ity to execute in multithreading mode with more than two
strands for each thread provides a benefit. However, in-
creasing the number of contexts in our hybrid technique
from four to six would enable two-way multithreading with
three strands apiece and reduce much of the advantage of
the alternative designs while requiring less complexity.

7 Design Space Evaluation

This section presents the results of the comprehensive
design space exploration for the latency tolerance tech-
niques on the 1024-core data parallel processor, comparing
performance, energy consumption, and chip area using the
design space parameters in Table 1. Energy efficiency of a
configuration is defined as the ratio of normalized perfor-
mance improvement divided by the normalized energy con-
sumption. Energy consumption and performance improve-
ment are normalized to a one-wide issue in-order baseline
with the smallest configuration. Pareto-optimal curves of
the design space exploration are presented when appropri-
ate. As performance increases and runtime decreases, com-
ponent activity and power consumption increase, as seen in
the curves representing a fixed power budget of 150 Watts.

7.1 Microbenchmarks

To understand the impact of choosing one technique over
another, microbenchmarks are utilized to isolate application
behavior. Figures 6a, 6b, 6¢, 6d, and 6e present the Pareto-
optimal curves of the latency tolerance techniques. As per-

formance improves, total energy can actually be lower than
the baseline as leakage energy is avoided.

Figure 6a presents the compute-intensive microbench-
mark. Due to the lack of memory accesses, prefetch-
ing techniques such as hardware prefetching and hard-
ware scout cannot provide any benefit. Both decoupled
and out-of-order extract ILP from a single thread, with
the decoupled providing better energy-efficiency due to
lower hardware complexity. Multithreading has low hard-
ware complexity and is able to tolerate even more floating
point latency with four threads, providing the best energy-
efficiency. Our proposed hybrid technique operates in de-
coupled mode, extracting three strands to tolerate floating
point unit latency. Overall, energy-efficiency is improved
through out-of-order by 17%, multithreading 36%, decou-
pled 30%, and hybrid 30% over hardware prefetching at the
150 Watt power budget.

Figure 6b presents the data-dependent control flow mi-
crobenchmark. Similar to the compute-intensive pattern,
hardware prefetching and hardware scout cannot improve
performance. Decoupled execution experiences loss-of-
decoupling when data-dependent control flow is present,
limiting performance to in-order execution. Both out-of-
order and multithreading have the ability to tolerate data-
dependent control flow. However, multithreading is more
energy efficient as speculation and the dynamic hardware in
out-of-order consumes extra energy. Our proposed hybrid
technique detects data-dependent control flow at compile
time and enables multithreaded execution, resulting in high
energy-efficiency. Overall, energy-efficiency is improved in
out-of-order by 13%, multithreading 77%, and hybrid 77%
over hardware prefetching at the 150 Watt power budget.

Figure 6¢ presents the data-sharing intensive mi-
crobenchmark. With a large amount of predictable L1
misses, hardware prefetching provides substantial perfor-
mance. While hardware scout provides better prefetching
capability, the added extra performance is offset by the extra
energy required to dynamically preexecute the instruction
stream. Multithreading experiences high levels of cache
contention which increases cache activity and energy con-
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Figure 6: Pareto-optimal energy efficiency for techniques on microbenchmarks normalized to hardware prefetching.

sumption, and prefers larger caches to reduce contention
at a higher cost in energy consumption. Out-of-order and
decoupled execution offer the best energy-efficiency, with
only low complexity implementations of out-of-order re-
quired to tolerate the relatively small L2 access latency. Our
hybrid proposal executes in decoupled mode, yielding high
energy-efficiency. Overall, energy-efficiency is improved in
out-of-order by 12%, decoupled, 21%, and hybrid 21% over
hardware prefetching at the 150 Watt power budget.

Figure 6d presents the pointer-chasing microbenchmark.
Both hardware prefetching and hardware scout cannot eas-
ily predict the access stream, leading to lower performance
and significant energy waste. Out-of-order tolerates mem-
ory latency by executing the update portion of the mi-
crobenchmark independently, while only needing a small
instruction window to do so. Decoupled execution exhibits
similar behavior to out-of-order, with significantly lower
complexity. The independent nature of multithreading pro-
vides more outstanding memory accesses, which enables
substantial performance improvement over out-of-order or
decoupled execution. The hybrid technique enables two
threads of decoupled execution on the same core, enabling
better performance than four-way multithreading. Over-
all, energy-efficiency is improved in out-of-order by 23%,
multithreading 33%, decoupled, 26%, and hybrid 42% over
hardware prefetching at the 150 Watt power budget.

Figure 6e presents the memory-streaming microbench-
mark. Both hardware prefetching and hardware scout can
tolerate a large amount of memory latency. However,
prefetches are reactively generated on cache misses, result-

ing in the core spending significant time stalled. Out-of-
order needs a large and complex instruction window to pro-
vide enough independent work tolerate long memory laten-
cies. Decoupling operates similarly to out-of-order, with
substantially reduced hardware complexity and energy con-
sumption. Multithreading scales the number of threads to
uncover more memory misses and tolerate memory latency
at the cost of more context hardware and cache space. The
hybrid technique enables two threads of decoupled execu-
tion on the same core resulting in better performance than
four-way multithreading. Overall, energy-efficiency is im-
proved in hardware scout by 4%, out-of-order by 17%, mul-
tithreading 39%, decoupled, 27%, and hybrid 47% over
hardware prefetching at the 150 Watt power budget.

7.2 Average Energy Efficiency

Figure 6f presents the mean result of the design space
exploration, with the performance improvement and energy
consumption of each architectural configuration averaged
across the microbenchmarks. Our proposed hybrid tech-
nique is the most energy-efficient on average, with multi-
threading being preferred over out-of-order and decoupled
execution. While out-of-order is not the most energy ef-
ficient on any single microbenchmark, it provides robust
energy-efficiency across the benchmarks as compared with
decoupled or multithreading, which can experience pitfalls
from data-dependent control flow and cache contention.
Prefetching can tolerate some memory latency, but cannot
tolerate floating-point unit latency or much memory latency
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Figure 7: Pareto-optimal energy efficiency for techniques for each benchmark and averaged across benchmarks.

from pointer-based memory accesses. Our hybrid proposal
is robust across all the microbenchmarks, and does not suf-
fer either a performance or energy pitfall. Across the mi-
crobenchmarks, energy-efficiency is improved on average
in hardware scout by 2%, out-of-order by 20%, multithread-
ing 24%, decoupled 15%, and our hybrid technique 31%
over hardware prefetching at the 150 Watt power budget.

Averaging energy-efficiency across the microbench-
marks weights the importance of each code pattern equally.
We also varied the weighting and relative importance of
the five microbenchmarks from 0 to 100% in increments of
10%, and determined the most energy-efficient technique
for all possible weighting combinations. The proposed hy-
brid technique is the most energy-efficient across 78% of
the combinations, followed by out-of-order at 22%.

7.3 Visual Computing Benchmarks

The microbenchmarks illustrate the profound effect of
application behavior on the energy-efficiency of latency tol-
erance techniques. With this in mind, we perform the de-
sign space exploration on the benchmarks from visual com-
puting applications. Figure 7a presents the most energy-
efficient configurations for each benchmark normalized to
the hardware prefetching baseline. Figure 7b presents the
average of a single configuration across all the benchmarks.

On average, out-of-order, multithreading and decoupled
techniques provide similar levels of energy-efficiency, with
decoupled being preferred due to the majority of bench-
marks having memory-intensive patterns. These techniques
provide 66%-143% better energy efficiency than hardware
prefetching and hardware scout. However upon closer in-
spection, decoupled and multithreading techniques perform
quite differently depending on the code pattern. Bench-
marks dominated by data-dependent control flow such
as blackscholes, cutcp, and kmeans favor multi-
threading over decoupled execution by 14% to 76% due
to the ability to execute another thread instead of stalling
and waiting to determine the next basic block. Memory-
intensive benchmarks such as ££t, heat, and sobel fa-

vor decoupled execution over multithreading by 26% to
140%, as the cache footprint is kept low by maintaining
fewer threads per core. Out-of-order provides general per-
formance improvement across all the benchmarks similar to
the microbenchmarks, but this benefit is negated by the en-
ergy overhead required for dynamic scheduling. Hardware
scout is not competitive with hardware prefetching in terms
of energy-efficiency, being dominated by the extra energy
to preexecute the instruction stream to generate prefetches.

Our hybrid technique enables a larger degree of energy
efficiency. By detecting data-dependent control flow in the
compiler, blackscholes and cutcp operate in multi-
threading mode, while other benchmarks are in decoupled
mode. Only two strands are extracted in dmm, kmeans,
and mri enabling two-way multithreading. On average the
energy-efficiency improvement of the hybrid latency toler-
ance technique is 28% to 89% over hardware prefetching,
out-of-order, multithreading, hardware scout prefetching,
and decoupled techniques alone.

7.4 Combining Other Techniques

We perform a design space exploration to compare other
combinations of hardware prefetching, out-of-order execu-
tion, multithreading, hardware and decoupled execution.
Figure 8 presents the Pareto-optimal energy efficiency of
these combinations on the benchmarks. Where appropriate,
we include the ability of a combination to statically disable
hardware prefetching, hardware scout, or multithreading if
it does not improve performance. For clarity, we omitted
combinations such as decoupled execution with hardware
scout and out-of-order due to their similarities.

Adding hardware prefetching improves energy-
efficiency on out-of-order 8%, multithreading 6%, and
decoupled execution 6%, though additional memory la-
tency tolerance does not benefit every benchmark. Adding
hardware scout to out-of-order and multithreading gives
mixed results, with only cg and £ft for multithreading
seeing a benefit due to better cache contention coverage,
and blackscholes and sobel for out-of-order see-
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ing a small benefit on long cache misses. Combining
out-of-order and multithreading yields little benefit, as
the fixed cost of implementing dynamic scheduling hard-
ware already provides some amount of latency tolerance,
while adding additional threads can also increase cache
contention. Combining decoupling with multithreading is
the best combination, due to low hardware complexity and
robust performance across varying workloads, providing
an additional 26% improvement in energy-efficiency over
any other combination. Adding hardware prefetching to
a combination of decoupled execution and multithreading
can further improve energy-efficiency, as shown by the
18% improvement in sobel.

7.5 Average Area Requirements

Figure 9 presents the mean performance improvement
compared with the absolute chip area for the design space
exploration on our 1024-core data-parallel processor. The
five microbenchmarks are equally weighted. Voltage scal-
ing provides significant performance improvement over
hardware prefetching without cost in area. Out-of-order
is significantly more expensive than other techniques. At
lower performance improvement levels, hardware prefetch-
ing, multithreading, and hardware scout are more area
efficient than our proposed hybrid approach. However,
these techniques must rely on larger caches to continue
to improve performance, and eventually become less area-
efficient than our hybrid technique. The memory-latency
tolerance ability of decoupling and our hybrid technique
is less sensitive to cache-sizing and as a result the area-
efficiency scales much more favorably. Overall, our hybrid
technique substantially improves performance over hard-
ware prefetching while keeping chip area under 400 mm?2.

8 Related Work

Prior work has described methods for investigating
energy-performance tradeoffs when considering in-order
and out-of-order uniprocessors [2]. That prior research ex-
plores the design space of a single processor, varying archi-
tectural parameters using CACTI and synthesis flows. We
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Figure 9: Pareto optimal curves for chip area of each tech-
nique averaged across all microbenchmarks.

utilize a similar approach, but build upon it considerably
by introducing hardware prefetching, multithreading, hard-
ware scout, and decoupled execution as potential latency
tolerance techniques and evaluate on a 1000-core data-
parallel processor and benchmarks. Other research has in-
vestigated the design space for multi- and manycore proces-
sors. Mabhesri et al. investigated area-efficient throughput-
oriented core architectures [15]. Huh et al. presented early
work on the design space of multicore CMPs, and enumer-
ate important application characteristics [9]. Bakhoda et al.
presented GPU benchmarks and perform sensitivity analy-
ses to chip design parameters [?]. Our work improves over
past work by focusing on exploring the design space and
giving special attention to modeling the physical design, in-
cluding energy consumption.

Combinations of latency tolerance techniques have been
implemented in the context of serial-performance focused
processors. Intel’s i7 [20] and IBM’s POWER?7 [23] imple-
ment out-of-order and simultaneous multithreading. IBM’s
POWERG6 architecture implements multithreading and a
restricted form of hardware scout, called load-lookahead
prefetching [12]. Other work proposes dynamic instruc-
tion partitioning into separate threads and leverages out-of-
order hardware in order to provide memory latency toler-
ance [19]. Additionally, many designs have implemented
hardware prefetching. Our work investigates various com-
binations of these techniques in the context of 1000-core
data-parallel processors and benchmarks and proposes a
novel and low-complexity hybrid technique to provide ro-
bust energy-efficiency.
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9 Conclusion

Modern data parallel processors require energy-efficient
latency tolerance to reach the goal of maximizing perfor-
mance per Watt. However, commonly used techniques fall
short of this goal, either by suffering from pitfalls due to
application behavior, additional hardware complexity, or
excessive energy waste. We propose a novel hybrid la-
tency tolerance technique leveraging both multithreading
and decoupling to provide robust performance and energy-
efficiency. While multithreading and decoupling in isola-
tion have performance pitfalls on different code patterns
commonly found in data parallel workloads, intelligently
combining the two techniques can avoid these pitfalls and
improve energy-efficiency significantly.

Leveraging the properties of multithreading and decou-
pled execution, we design static execution mode selection
and dynamic instruction scheduling algorithms for our pro-
posed hybrid technique. We then utilize high-fidelity per-
formance and physical design models and perform a com-
prehensive design space exploration to compare the energy-
efficiency of our hybrid technique with commonly used la-
tency tolerance techniques on a 1024-core data parallel pro-
cessor. Our hybrid latency tolerance technique improves
energy-efficiency over other single techniques by 28% to
89%, and over any other combination of techniques by over
26% on data parallel benchmarks.
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