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State of art DL models are growing in size and complexity, with many modern models also increasing in heterogeneity of behavior.
GPUs are still the dominant platform for DL applications, relying on a bulk-synchronous execution model which has many drawbacks
and is ill-suited for the graph structure of DL applications. Many industry and academic works attempt to overcome these by employing
vertical fusion but this approach still fails to realize three untapped opportunities: (1) the fact that many resources on the GPU
are idle while only one operator executes due to temporal multiplexing of the SM; (2) lower energy from more intelligent on-chip
data-movement which lends to higher performance in a power-provisioned environment. (3) inability to exploit hidden or reduction
dimensions as a source of parallelism to ease pressure on batch size. This paper explores relatively uncharted territory, answering the
following key question: Can modest adjustments to the current GPU architecture enable efficient dataflow execution, thereby circumventing
the constraints of vertical fusion without necessitating a clean-slate architecture design. We develop Kitsune — a set of primitives that
enable dataflow execution on GPUs and an end-to-end compiler based on PyTorch Dynamo. Across 5 challenge applications, Kitsune
can provide 1.3x-2.3X and 1.1X-2.4X performance improvement as well as 41%-98% and 16%-42% off-chip traffic reduction for inference

and training, respectively.
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1 Introduction

Graphics Processing Units (GPUs) have become the dominant platform for executing deep learning (DL) algorithms
due to their amenability to matrix-multiplication and other common DL operations. Historically designed for Single
Instruction, Multiple Thread (SIMT) execution with extensive register files, GPUs have evolved significantly. They now
boast intricate memory hierarchies, specialized Tensor Cores for general matrix-multiply (GEMM) computations, and
support for atomic memory instructions [34]. Depicted in Figure 1, GPUs (a) employ a relatively simple bulk-synchronous
programming (BSP) model (c), where a set of independent work items for a single operator (commonly implemented
as a single kernel) are run to completion followed by a global barrier before the next set is dispatched. However,
the BSP model is a misfit to the directed-acyclic graph structure of DL applications, and hence encounters

inefficiencies centered around three key areas: the inability to exploit on-chip data locality of intermediate data

Authors’ Contact Information: Michael Davies, NVIDIA, USA, karus@nvidia.com; Neal Crago, NVIDIA, USA, ncrago@nvidia.com; Karthikeyan Sankar-
alingam, NVIDIA, USA, karus@nvidia.com; Stephen W. Keckler, NVIDIA, USA, skeckler@nvidia.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Manuscript submitted to ACM

Manuscript submitted to ACM 1


https://doi.org/10.1145/nnnnnnn.nnnnnnn

L1$ / Shared Mem.

' '
' '
' '
' '
' '
' '
. ' ' 5
) E : ' §
2 ' H
o Mo 1 , £ >
2 ' Shared Reg. File . i
] ' '
i Warp Sched. H
' '
| e mccmmmm e — - ' -—- Bigger Perf Win B4
GPU Streaming Multiprocessor (SM) SIMT D D I:l D

(a) GPU Organization (b) Example DL Graph (c) Overview of Techniques

Fig. 1. (a) Overview of GPU organization, (b) example DL graph, and (c) stylized comparison of execution techniques. In (c), TensorCore
and SIMT resources of the GPU are depicted separately.

passed between operators due to large memory footprints spilling to DRAM, and idle resources due to limited parallelism
or low arithmetic intensity within operators.

Vertical fusion, depicted in Figure 1 (c), is an approach for GPUs to amortize kernel launch overheads and improve
data locality between operators and thus reduce off-chip memory traffic through fusing multiple operators into a single
CUDA “mega kernel”, establishing the need for flexibility in GPU execution. Under this paradigm, GPU’s execution
resources are temporally multiplexed between several “fused” operators, interleaving partial executions of each operator,
allowing tiles of intermediate data to stay resident on chip for reuse, and removing the need for kernel barriers between
fused operators. This multiplexing is depicted in Fig 1 (c) by how at a given time, only the TensorCores or SIMT
resources are active. This technique has been commercialized in tools such as TensorRT [49] and advanced through
academic endeavors like Welder [45], Astitch [62] and others [9, 15, 57, 58, 61]. Despite its effectiveness, vertical fusion
leaves three performance opportunities untapped. First, because of temporal multiplexing, the technique does not take
advantage of the many idle resources available while one operator is executing. Second, because of how vertically fused
operations are structured, spilling large intermediates to DRAM can become unavoidable, incurring a round-trip DRAM
latency penalty. Third, it is unable to exploit reduction or hidden dimensions for parallelism to ease the need for large
batch-level parallelism.

Many academic and industry approaches (Groq for e.g.) recognize that dataflow execution (i.e. concurrently executing
operators across space rather than time) aligns more naturally to the graph structure of DL applications — mitigating the
above inefficiencies of BSP and vertical fusion with clean-slate architectures [1, 2, 21, 39, 40, 44, 50]. The focus of these
efforts is dataflow execution of DL (sub)graph nodes at the single-chip level, while recognizing other aspects of dataflow
execution also exist at the system level [3] and within the matrix-engines themselves [5, 6, 43]. This paper explores
relatively uncharted territory, answering whether modest adjustments to the dominant GPU architecture
and software stack can enable efficient dataflow execution at the chip-level.

Our key insight is two complementary software-hardware primitives are sufficient to enable dataflow execution on
GPUs. They are: 1) a software-only ring queue which facilitates inter-CTA (Cooperative Thread Array) communication
by using the L2 cache and global atomics; 2) a modest change to the GPU’s grid scheduler to enable it to exploit the
heterogeneity of concurrently executing operators. We find that an effective end-to-end compiler can be built that uses
these primitives to allow automatic lowering of DL applications to dataflow execution on GPUs, avoiding the need

for new IRs or a complex code generation backend. This system, named “Kitsune”, addresses the problems of the BSP
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model: executing more than one operator concurrently and passing tiles of intermediate data through on-chip queues
increases available parallelism and reduces memory bandwidth pressure. This is depicted in Figure 1 (c), where multiple
different operators can executed simultaneously across both the SIMT and TensorCore resources on the GPU.

The contributions of this work are as follows.

(1) A systematic characterization of DL applications that highlights the mismatch between graph behavior
and GPU bulk-synchronous execution.

(2) A design and analysis of Kitsune’s SW/HW primitives needed to enable synchronous dataflow execu-
tion on GPUs.

(3) A design and implementation for the Kitsune compiler which enables applications to transparently
leverage dataflow execution on GPUs.

(4) An evaluation of Kitsune across several diverse DL models, spanning inference and training, on a
SOTA A100 class GPU. We show 1.3X to 2.4X speedups, with 16%-98% reduction in memory traffic (which
indirectly serves as a form of power/energy savings). We also compare Kitsune to SOTA vertical fusion techniques
and elucidate the reasons why Kitsune is able to achieve superior performance.

(5) A sensitivity study of Kitsune’s hardware synergy. When increasing inexpensive hardware resources by
2% (on-chip compute, on-chip L2 cache bandwidth), while keeping expensive resource (memory bandwidth)
unmodified, Kitsune effectively achieves 47% and 27% speedup for inference and training, respectively, while

baseline execution shows only 18%-26%.

2 Background

This section presents an overview of Deep Learning, GPU hardware, it’s connection to the BSP execution model, and
pointers to recent hardware support.

Deep Learning. DL applications use learned parameters to make predictions on data across a variety of application
domains, combining input and parameter tensors (multidimensional arrays) with mathematical operators such as
linear projections (Linear) to produce outputs. A computational graph is constructed during execution which is then
used in automatic-differentiation for computing gradients to “train” parameters. Common operators include linear
projection, element-wise operators such as ReLU and addition, attention, layernorm, softmax, and convolution. Linear
projection, attention, and convolution are all computationally similar; reducing to general matrix-multiplications
(GEMMs) whose dimensions are dictated by the operator parameters. Often GEMMs are colloquially used to express
the entirety of work done by these operators.

GPU Hardware. Figure 1 (a) presents a modern GPU chip design [32]. A GPU comprises a set of multiple Streaming
Multiprocessor (SM) processing cores, a globally shared L2 cache (among all the SMs), and main memory accessible
through a high bandwidth interface. SM execution is managed by a GPU-global grid scheduler which is responsible
for dispatching work sent from the driver over PCle. The SM includes local data storage, including a large register
file and a memory that can either be configured as an L1 cache or a software-managed scratchpad memory (also
known as shared memory). Each SM also includes compute functional units for general computation (SIMT Cores), and
dedicated hardware for accelerating tensor operations such as matrix-multiplication (Tensor Cores). The memory system
additionally includes support for atomics which are facilitated by the L2. SM counts range from 80 for V100 [35], 108
for A100 [33], and 132 for H100 [34]. Roughly speaking, the L2’s bandwidth is 3X of main memory bandwidth [11-13].
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Fig. 2. Visualization of the difference between Kitsune and Vertical Fusion for (a) an MLP with a large hidden dimension, (b) a
reduction operation, and (c) an operator that sends intermediate to multiple consumers.

GPU Execution model. A GPU kernel (typically mapped one-to-one with DL operators) is code that is compiled and
run on the GPU’s SIMT abstraction. Kernels are run with a BSP execution model where one kernel occupies the GPU at
a time and finishes completely before the next kernel starts. Each kernel’s threads are organized into collections of
threads known as cooperative thread arrays (CTAs, a.k.a. “threadblocks”), and all the CTAs of a kernel make up a
grid. A CTA is a non-divisible quanta of work that is mapped to and executes to completion on an SM, where each
thread maintains private state in the register file, and communicates with other threads in the same CTA via shared
memory.

In the microarchitecture, threads within a CTA are grouped into fixed-size warps (32 for most modern GPUs) which
execute in lock step. In modern GPUs, multiple CTAs can run simultaneously on a single SM. Modern GPUs allow
multiple grids to execute simultaneously in limited situations, and have included rich support for atomic memory
operations, allowing threads within a CTA, grid and across grids to synchronize with global atomics [29]. CUDA
Streams [22] and CUDA Graphs [30] are APIs that enable users to specify which kernels are independent and can
run simultaneously. In practice, neither of these result in co-executing kernels — due to first-in-first-out ordering and
queuing hardware in the global grid scheduler. Current GPUs restrict that a new kernel can only start dispatching once

all the CTAs from the current one have dispatched resulting in minimal execution overlap of the two kernels [31, 48].

3 Motivation and Program Behavior Characterization

In this section, we motivate dataflow execution by examining the opportunities present across a range of DL applications’
operator graphs. The applications we focus on are summarized qualitatively in Table 1. Our DL applications include
DLRM [27], MeshGraphNets [38], NeRF [26], GraphCast [18], and Llama 3 8B [7]. Note for Llama 3, we discuss it in
terms of three separate use-cases: (1) training which encompasses the forward and backward pass for a whole set of
tokens, (2) context-phase (“ctx”) which encompasses just the forward pass prefill step of inference, and (3) decode-phase
(“tok”) which encompasses the autoregressive token-generation step of inference. The context and decode phases are
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Table 1. Description of selected applications.

Application Year Use Case

DLRM 2019  Predicting ad clicks
MeshGraphNets 2020 Mesh based physical simulation
NeRF 2021 View synthesis

GraphCast 2022  Weather forecast prediction
Llama 3 8B 2024 Language modeling

inference only and will not appear in training results. We first discuss several common patterns, summarized in Figure 2,
which we observe are frequently exhibited in popular DL applications, focusing on the limitations of state-of-art vertical
fusion compared to Kitsune dataflow.
Operator Patterns. Figure 2 depicts three common graph patterns composed from Linear, Elementwise, and Reduce
operators. These patterns are abstracted from detailed shapes for our applications encompassing examples found in both
inference (forward-pass) and training (back-propagation). Elementwise and Reduce operations are not computationally
intensive and cannot use the TensorCores on the GPU, unlike GEMM operations which do. Fig 2 (a) depicts a common
scenario where a linear layer (Le. a GEMM) produces a large output dimension (“N”) which is then fed to a downstream
Elementwise and subsequent linear layer. This is seen in many MLPs, and is especially common in the feed-forward
network in transformer models which perfrom an projection (linear layer) into a high-dimension followed by a non-linear
operation and subsequent projection back to a smaller dimension. Fig 2 (b) depicts a simple reduction operation. This
can be found typically in split-K GEMM operations where partial sums need to be reduced. In addition, reductions over
the batch dimension are very common in back-propagation. Finally, Fig 2 (c) depicts a scenario where one Elementwise
feeds two consumer GEMM operations. This is very common in back-propagation, notably for a Linear-Activation
pair the backward pass involves computing the gradient for the activatino function which feeds two gradient GEMMs -
one for the input activation and one for the weights.
Vertical Fusion Mechanism. Vertical fusion seeks to improve DL performance by combining multiple DL nodes
and temporally switching between partial executions of each node to avoid main-memory traffic of intermediate data.
Different code-regions in a single vertically fused kernel encode the entire computation of the fused subgraph, with
each CTA working on data-parallel shards of the problem. Keeping with the BSP execution model in which vertical
fusion operates, CTAs do not interact with each other and tiles of intermediate data are only passed between the partial
executions within a CTA. Therefore, implementations of vertical fusion prioritize staging data in shared memory or the
register file [45, 62].
Vertical Fusion’s Utilization Limitations. Vertical fusion is unable to exploit idle GPU resources. Figure 3 shows, for
our application selection, a breakdown of application runtime with respect to SM and DRAM utilization measured from
performance counters by NSIGHT Compute for vanilla PyTorch and inference compiled with TensorRT (representative
of vertical fusion). We define "low" utilization as less than 33% of peak, generating four categories. "Both Low" implies
that both DRAM and SM utilization are less than 33%, "Low SM" and "Low DRAM" categories have only one resource
below 33% utilization, and "Neither Low" is time spent with DRAM and SM utilization above 33%. While "Low" categories
indicate portions of time spent with GPU resource severely underutilized, there remains some opportunity even in the
"Neither Low" case.

Note that TensorRT does not support training so we only show TensorRT result for inference. Across our applications
for bulk-synchronous (unfused) execution, we see 20-25% and 37-67% of runtime is spent with both low SM and DRAM
utilization for inference and training, respectively; with the exception of DLRM (which has 77% and 89%) and Llama
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Context / Train (which has 0.1% and 0.3%). Indeed TensorRT fusion does improve this picture for inference with all
applications showing a decrease in “low” utilization with the exception of MeshGraphNets. Despite this, there is still
ample opportunity for dataflow to capitalize on idle resources shown by the large amount of runtime spent with low
utilization of one or both resources. Even if neither resource are low, as exemplified by NERF inference with TensorRT,
there’s still opportunity for dataflow: operators executing by dataflow eliminates DRAM traffic which would lower the
effective DRAM utilization, leading to additional headroom.

Vertical Fusion’s Coverage Limitations. We discuss coverage limitations by considering graph patterns shown in
Figure 2. In Figure 2 (a), when an operator produces an intermediate with a large hidden dimension (E.g. MLP with
N > 768 on an A100 with 192 KB of shared memory), the resultant GEMM tiles exceed the shared-memory capacity.
Because of this, even modestly sized intermediates can cause spills to off-chip DRAM! As a result of this, the latency
from a round-trip to/from off-chip DRAM is incurred for spilled data. On an A100 GPU, this latency is ~ 409ns or
572 cycles at 1.4GHz. In addition to spilling, because of how vertically fused kernels temporally multiplex the SM,
either the SIMT cores or Tensor cores will be idle during computation of each operation, leading to under-utilization of
the SM. Naively mitigating this by assigning multiple CTAs to an SM has a major drawback of cutting the effective
shared-memory per CTA by the same factor, exacerbating the capacity problem.

Figure 2 (b) depicts a reduction operation. One notable and unavoidable place where reductions are common is in
back-propagation where gradients are often reduced over the batch dimension. Despite the batch dimension usually
being a source of abundant parallelism, here neither BSP or Vertical Fusion are able to extract parallelism from the batch
dimension for gradient reduction operation. This means that a small number of CTAs end up performing a reduction,
leaving most SMs idle.

Finally, Figure 2 (c) depicts a case where one operator’s output is consumed by multiple downstream operations. In
particular, this pattern of multicast is representative of back-propagation for a standard Linear+Activation graph.
Similar to (a) we find this can lead to spilling tiles of data to off-chip memory since the state needed for one successor
child may over-run the shared memory, evicting an intermediate that is needed for a different child. We also see that
heterogenous operations cannot simultaneously execute on the SM, leading to underutilization. In general, we observe
prior work on vertical fusion does not support back-propagation at all, though we depict in our figure how it would be
implemented.

Kitsune. Our insight is that dataflow - i.e. having different operators co-execute spatially across SMs, rather than
temporally switching between executing operators across time — solves all these problems, while preserving the benefits
of vertical fusion. Kitsune implements dataflow execution by mapping single operators to CTAs, then passing tiles
of intermediate data to downstream operator CTAs using inter-CTA queues residing in on-chip memory to avoid
off-chip memory accesses. In doing so, operator CTAs are concurrently mapped and executed across the SMs of the
GPU. Multi-cast and parallel reduction simply become one-to-many and many-to-one communication patterns using
our data-queue. The capacity issue, is then trivially solved by splitting hidden dimensions spatially. Using our modified
grid scheduler, hardware under-utilization can be solved by assigning different types of CTAs to an SM for co-execution.

Revisiting Figure 2, Kitsune can extract performance wins for all of these patterns. First, Kitsune is able to simultane-
ously execute heterogeneous operations on an SM, addressing under-utilization. Second, with significantly reduced
data-movement (especially to/from off-chip DRAM) energy is saved, potentially allowing for higher clock frequencies
to be sustained. Finally third, Kitsune is able to extract parallelism from hidden and reduction dimensions.

!Indeed the L2 could provide some additional buffering but since every SM runs a data-parallel replica of the same subgraph with the same intermediate
storage requirements, that capacity is quickly overrun as well.
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Fig. 3. Application runtime spent in different combinations of measured SM and DRAM utilization. Low utilization means less than
33% of peak.

4 Kitsune Primitives for Dataflow on GPUs

Kitsune enables the GPU to logically operate with a synchronous dataflow execution model that relaxes the assumptions
of bulk-synchronous execution, relying on and leveraging dependence and communication between CTAs from different
pipeline stages. The execution model comprises of CTAs explicitly communicating with each other which triggers
and throttles execution speeds. When data is available in a queue, a CTA starts its execution, writing results to its
producer queue. When there is no data in its queue, it idles. The first node of a subgraph reads activations from
main-memory (essentially outputs of preceding subgraphs or bulk-synchronous code), and the last node writes results
to main-memory. In addition to reading from a queue, a CTA is free to read any other values from memory, and similarly
can write to main-memory in addition to writes to its producer queue to trigger its successor. In the formal context
of execution models models [19], Kitsune falls under the category of synchronous dataflow. Future work can examine
further extensions like dynamic dataflow.

The following subsections develop Kitsune’s two key primitives that enable this synchronous dataflow execution
model. The first is a synchronized queue structure which allows inter-CTA communication (§4.1). The second is a
modified grid scheduler that exploits heterogeneity among executing CTAs to facilitate fine-grained overlapping
execution on the SM (§4.2). We conclude this section by discussing the logical execution model that Kitsune’s primitives

now provide.

4.1 Producer consumer communication

We use GPU atomics to design a synchronized, ring buffer queue for passing data between CTAs. Queues are pinned in the
L2 cache using CUDA API functions [33] (Fig 4(a)). Each entry contains metadata protected by atomic accesses. Figure 4
shows (a) a diagram of our queue design (with two entries for double-buffering), (b) a timeline of producer-consumer
operations, (c) stylized code implementing the queue, and (d) application-level usage. Two CTAs communicating
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payload& wr_acquire(int seq_n) { void stageO(Queue& q) {

Queue (Len=2) LD Slot& s = slots[seq_n % N]; Queuewriter wr(q);
Resident in L2 if (threadidx.x == 0) {
1. atomic read / spin _ (RO while atonicadd(s.sea_n, 0) for (int i = 0; i < 100; i++) {
Seq. Num. Pad A1 : q-nJ; auto output = wr.acquireQ;
# W Done Pad |! . stageO_work(output);
o o _ __syncwarpQ; .
3.atomic+1  |#R Done Pad | > Consumﬂ %8' return slot.data; wr.release();
c S }
w » P }
Payload N pPayload& rd_acquire(int seq_n) { id 1
2. st.global —— -- -- Slot& slot = slots[seq_n % N]; void stagel(Queue& ‘fl) {
(1Seq. Num. &) A2 if (threadidx.x == 0) { QueueReader rd(q);
‘_WEEW Done Pad = while (atomicadd(s.seq_n, 0) L. . .
>/#RDone  |«Pad——3. atomic +1 o N 1= seq_n); for (int i = 0; i < 100; i++) {
2 ) Eg i . auto input = rd.acquireQ);
Producer w Pavload [ 1 »n P while (atomicAdd(s.w_done, 0) stagel_work(input);
ayloa 2. 1d.global = N = NW); rd.release();
. o o __syncwarpQ); }
‘— Cache Line —
return slot.data;
}
(a) (b) (c) (d)

Fig. 4. Queue design. Note: release routines are not shown for space reasons. They involve simple atomicAdd calls to update
synchronization metadata and a CTA barrier with __syncthreads().

(Fig 4(b)) “acquire” and “release” entries, achieving ordering via sequence numbers. The producer and consumer acquire
entries (wr_acquire and rd_acquire in Fig 4(c)) by spinning on metadata variables until an entry is freed for use.
acquire and release are exposed as an API which handle sequencing automatically. Typically, only one CTA is
spinning on a variable at a given time — meaning our queue design results in very low contention.

Our queue is implemented as a library with two API functions: acquire and release. This allows for easy software

integration, introducing minimal overhead exploiting the modern GPU’s sophisticated warp-scheduler. Queue code
is wrapped with if threadid==0, ensuring only one thread in a CTA does any of the queue management. To avoid
data-races, “release” operations require a CTA-level barrier. Figure 4(d) shows how it can be used intuitively by a CUDA
programmer or inserted by a source-to-source compiler into existing CUDA kernels. Synchronization variables are all
padded to the size of a cache line to avoid false-sharing.
Queue Performance. Using a microbenchmark, we measure the A100 can sustain 100 M atomics / sec / CTA when
under no contention. Based on additional measurements, we find this lends to an upper bound of 385-1541 GB/s per
queue, far exceeding L2 and HBM bandwidth (~61 GB/s per SM). We evaluate our queue’s performance by measuring
SM-SM bandwidth with varying payload sizes for 54 queues (108 CTAs for the 108 SMs of the A100 GPU). Figure 5
shows queue management overhead by measuring the performance of data transfers with and without synchronizing
atomics enabled. We find with 128-256 KB payloads, aggregate bandwidth reaches 2 TB/s (37 GB/s/queue). Beyond 256
KB, performance drops due to queue sizes reaching the L2 capacity, causing accesses to spill out to HBM (Limiting us
to 1.5 TB/s for A100). Synchronization overhead is large for small queue sizes: 12X reduction in bandwidth for 1KB
payloads. With larger payloads this reduces: synchronization overhead is less than 63% for >64KB payloads. Overall, we
find GPU global atomics performance is more than enough for our use case. We also find our atomics-based L2 resident
queue provides substantial inter-CTA communication bandwidth even in the presence of contention for payloads ranging
between 64-256KB.

4.2 Scheduling heterogeneous CTAs

In order to capitalize on idle resources of the SM - for example, make full use of both the Tensor Core and SIMT Core
simultaneously — we propose a modest change to the CUDA API and GPU Grid Scheduler to specify spatial pipelines
(shortly defined) of kernels and maximize GPU resource usage. This is important for enabling and managing true
co-execution of kernels which is not supported on current GPUs (§2).
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cudaPipelineCreate(&pipe);
// Construct the Pipeline

cudaGraphAddNode(pipe, kernel_a, {}, OP_TENSOR);
cudaGraphAddNode(pipe, kernel_b, {kernel_a}, OP_SIMT);

A
cudaGraphAddNode(pipe, kernel_c, {kernel_b}, OP_TENSOR);
cudaGraphAddNode(pipe, kernel_d, {kernel_c}, OP_SIMT);
C

// Instantiate the Pipeline
cudaGraphInstantiate(&instance, pipe);

// Launch the Pipeline

cudaPipelineLaunch(instance, stream);
cudaStreamSynchronize(stream);

Fig. 6. Code snippet of the proposed cudaPipeline API.

CUDA API Exposure. We introduce an abstraction we call a CUDA “spatial pipeline”, with a similar API to CUDA
Graphs but different semantics. Like a CUDA graph, a spatial pipeline specifies a collection of kernels to execute with
the key difference being it implies all kernels in the collection require being co-resident on the GPU. The calling code is
responsible for limiting the number of CTAs launched per kernel to ensure co-residency is possible (§5.3). Figure 6 shows
a snippet of host code which specifies and configures the launch of a spatial pipeline. Data dependence information is
specified similar to CUDA graphs, and kernels are configured with new metadata that specifies the primary type of
dynamic resource they require, either SIMT or TENSOR.

Hardware Implementation. To complement our CUDA spatial pipeline abstraction, we propose a modest change to
the grid scheduler that allow it to leverage the type information now passed via the kernel call header. On current GPUs,
the grid scheduler hardware stores occupancy info for how much of each SM’s resources are consumed, which is used
to greedily find the first available SM for CTA dispatch using a hardware arbiter (i.e., round-robin) [48]. However, this
greedy policy doesn’t work for Kitsune as it doesn’t guarantee overlap; We need to ensure that CTAs of different types
are effectively paired for execution on the SM. We augment the round-robin prioritization hardware with two arbiters,
one for each type. The two arbiters enables the scheduler to effectively pair different types together, by separately
considering dispatch to the same SM. When a new kernel arrives, the arbiter is selected based on the type. The CTA

scheduling then proceeds as usual, checking the occupancy of the current SM under consideration for dispatch.

5 Kitsune Compiler Design

In this section we develop the Kitsune compiler, which enables DL applications to transparently leverage dataflow.
We implement Kitsune as a PyTorch [24] compiler backend. We use PyTorch 2.0’s Dynamo interface for extracting
application graphs including both the forward pass and back-propagation for training. Our compiler backend consumes

these graphs and constructs spatial pipelines for execution.
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To realize this compiler, several challenges must be addressed. First, subgraphs must be selected from the original
application graph for fusion (§5.1). Second, a pipeline must be designed for the subgraph with stages corresponding to
operators (§5.2). Third, the stages must be assigned GPU resources to achieve optimal performance addressing load-
balancing (§5.3). Figure 7 depicts how each of these pieces are applied to a PyTorch application. The compiler leverages
our software queue structure and modified GPU grid scheduler to enable inter-stage communication and intelligent
CTA placement to exploit fine-grain SM resource sharing. Figure 8 depicts how our compiler lowers MeshGraphNets,

and will serve as a running example throughout this section.

5.1 Subgraph Selection

We first need to select subgraphs for dataflow execution which involves marking groups of DL operators in the
computation graph for co-execution in a pipeline. We denote these groups of operators / nodes that form a pipeline as
an sf-node. The output of this phase is labeled graph with sf-nodes identified. At the graph level, a spatially-fused
group (sf-node) of operations must be “contiguous” as defined in [47] - that is, there must be no edge which exits the
subgraph with a down stream edge that reenters it. Subgraph selection influences pipeline design, allocation, assignment
and hence performance, potentially requiring an iterative solution. As a practical solution, we implement a single-pass
design that use two rules to exclude a node from a subgraph: nodes that are bulk-sync friendly and nodes that index /
gather across all data (gather nodes for embedding for example). With such node exclusions defined, subgraph selection
converts to pattern-matching.

Our design and implementation of subgraph selection is heuristic based and uses manual pattern matching. By exam-
ining applications properties we identified node patterns that are candidates for subgraph exposing the vulnerabilities
of bulk-synchronous execution and vertical fusion. It is essentially a set of regular expressions that express patterns
including those seen in Figure 2. In particular, our implementation operates at the topological order which linearizes
the graph into a list in PyTorch Dynamo (which is deterministic). In practice, additional regular expressions to express
different orderings for the topological order are easy. A more formal automata that captures all possible linearizations
of a subgraph is beyond the scope of this work.

We leverage PyTorch’s Dynamo to extract whole operator graphs of the forward and backward passes for an
application. We then created a library of patterns that expresses patterns that are candidates for subgraphs. We
implement a pattern-matching algorithm for then selecting subgraphs from the original application graph for dataflow
execution. This approach searches for user-specified chains of operators in a topological order. Adding new patterns is

a trivial task of adding to our pattern library. Figure 8 (a) shows how we selected a subgraph for MeshGraphNets.
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Algorithm 1: Algorithm for pipeline design

1 for nin Graph do

2 if IsReduction(n) then

3 fanin, final « SplitReduction(n)
4 Graph.replace([n], [ fanin, final])
5 n « final

6 end

7 if IsIntermediate(n) then

8 q < CreateQueue(n)

9 for ¢ in Dependents(n) do

10 ‘ c.producer « g

1 end

12 n.dependents « [q]

13 end
14 end

5.2 Pipeline Design

The pipeline design problem comprises of inserting queues between nodes of an sf-node, and if the work done between
two nodes is trivially fusable, fuse them using epilogue fusion (or vertical fusion). The output is a transformed graph
which includes one or more queue nodes added, which can then be lowered to CUDA code during code-generation.

Conceptually what this means is taking the original set of operations in the graph and either combining or splitting
them to map to pipeline stages that are realized by pipeline-enabled CUDA kernels. For simple patterns with 1-1
producer-consumer relationships, the decision is trivial - and involves insertion of queue nodes between nodes of an
sf-node. For more complex patterns like attention and back-propagation, we implement a parallel reduce which uses
our queues to form a reduction tree. Figure 8 (b) and (e) show a pipelined graph starting from our MeshGraphNets
subgraph and back-propagation of a single Linear layer, respectively.

In terms of implementation this involves three steps. The graph rewrite algorithm is shown in Algorithm 1. In terms
of code-generation, the queue implementation is discussed in §4.1. The third step is to take CUDA kernels and transform
them to read/write from queues, instead of from global memory. This last step also includes the process of working on
tiles, since a queue’s payload needs to be limited. In all cases, the notion of tiling already exists or is trivially doable;
for GEMM:s the code is already written to work on tiles of inputs and outputs. Completely automating this step for
arbitrary code is likely infeasible and involves all the challenges of aliasing analysis etc. For Kitsune, we performed this
step manually - it took about 8 person-hours or less for each kernel, with the source-code lines changed ranging from
10 to 40. The limitation this adds to Kitsune is that it is not completely turn-key for new operators not previously seen
by the compiler, requiring very modest library modifications of the underlying new DL operator. In practice, library

developers like NVIDIA and AMD can incorporate such a flow trivially into their development process.

5.3 Load Balance

Load balancing in Kitsune involves the logical allocation of # CTAs to each node in an sf-node. Its output is an allocation
as shown in Figure 8(c). This needs to be done cognizant of overlapped execution of dissimilar CTAs on the same SM.

We use a zero-latency performance model to estimate the throughput of a spatially-fused subgraph based on an
allocation of CTAs to each stage. We then formulate the allocation problem as an integer linear program (ILP) which

can be used with standard solvers to produce an optimal assignment which maximizes throughput of the subgraph. We
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Fig. 8. Running example of two subgraphs selected from (a) MeshGraphNets. (b) shows an MLP selected from the full application
graph forward pass and its pipeline design. (c) and (d) show the allocation and assignment. (e) shows a subgraph from the backward
pass for a Linear+ReLU and its pipeline design. We omit allocation / assignment for space. White rectangles in (b) and (e) represent
queues.

augment our ILP formulation to enable over-subscribing CTAs onto SMs to enable overlapping dissimilar behavior
— specifically, we consider two classes of operations: SIMT-heavy, and TensorCore-heavy, and assume an SM can
simultaneously execute one of each with no performance degradation. We discuss in §4.2 low level details of how this
overlap can be leveraged on modern GPU hardware.

Algorithm 2 shows our ILP formulation. We model throughput as the minimum throughput pipeline stage in the fused
subgraph additionally constrained by memory bandwidth and aggregate L2 bandwidth based on analytic evaluation of
the total number of bytes read/written from DRAM (DRAM Bytes), and L2 (L2 Bytes). For the i" of n operators in a
spatial pipeline, we estimate the performance by combining a measured BSP throughput (t;) with an estimate of how
the performance will scale (speedup or slowdown) based on how many CTAs it is assigned (r; =ResourceScale(a;)) and
an estimate of speedup afforded by operating where some number of its operands are now resident in on-chip storage
instead of DRAM (s; =Speedup(a;)). In practice, we define Speedup(a;) to be 1/u where u is the maximum resource
utilization of the SIMT or TensorCore pipelines. We allow the number of SIMT and Tensor stages to independently
be assigned SMs to exploit overlapping these dynamic resources. In practical deployment terms, we require either a
two-pass compiler, run-time optimization pass, or a dictionary of kernel characteristics to get u; to guide the ILP. Since
DL models generally run in a curated environment (TensorRT for example), any of those approaches are practical, and

don’t introduce any application slowdowns.
6 Evaluation

We now examine the effectiveness of Kitsune across our applications and GPU models. We guide our evaluation with
the following questions: i) How well does Kitsune support composing arbitrary operations across DL applications? ii)
What is the end-to-end performance of applications running with Kitsune and what are the reasons for variation across
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Algorithm 2: ILP formulation for load balancing.

maximize thrpt
subjectto thrpt <rixs;xt; (i=1,...,n)
thrpt =« (DRAM Bytes) < DRAM peqk
thrpt x (L2 Bytes) < L2peqk
t; = Bulk-Sync Thrpt. for Op i
r; = ResourceScale(a;)
s; = Speedup(a;)
1<a; <#SMs
n
Z IsSimt; * a; = # SMs
i=1

n
Z IsTensor; * a; = # SMs

i=1

applications and modes of operation? iii) What is the sensitivity of our performance and gains to machine parameters

including on-chip compute (number of SMs), off-chip DRAM bandwidth, and L2 and crossbar bandwidth?

6.1 Methodology

Our evaluation is based on running our 5 applications in a validated GPU simulator emulating an A100 GPU which
takes as input the compiled versions of our applications. We built our compiler and a queue library (§4.1) (characterized
and run on silicon). Because we need our grid scheduler modifications to allow the overlap afforded by Kitsune (§4.2),
we evaluate Kitsune using a modified version of NVIDIA’s NVArchSim (NVAS), a hybrid trace- and execution-driven
GPU simulator [51] that has been validated against NVIDIA’s Ampere GPU. This also allows us to study sensitivity to
individual hardware features, instead of being restricted to particular SKUs.

Our baseline for speedup results is unmodified PyTorch execution. We use our compiler and modeling flow based on
NVAS to present speedups afforded by both vertical fusion and Kitsune. Figure 9 shows the fusions that are chosen by
our compiler: thick orange boxes on the left side show the fusions we select based on vertical fusion techniques, while
thick purple boxes show the fusions made possible with Kitsune. Note: our model of vertical fusion combines
the techniques and mechanisms from state-of-art industry and academic approaches of TensorRT [49],
AStitch [62] and Welder [45].

We first describe the quantitative scope of the opportunity that Kitsune provides. We then discuss inference and
training separately. For Kitsune, we present results for both the subgraphs of the applications as well as the speedup for

the entire application.

6.2 DL Application Operator Coverage

Table 2 provides a characterization of the applications at the DL operator level denoting the number of operators that
are grouped into pipelines. The top half of rows are for inference and the bottom half are training. Note this data is
for operator count (we discuss time below). For the majority of our applications, >70% of operators are candidates for
grouping, with higher coverage for inference. We note that vertical fusion covers only the forward pass operators for

training? and it’s coverage is typically lower. The last two columns show memory traffic savings both for Vertical Fusion

2We note that none of the academic work or TensorRT have demonstrated execution of training yet - our results are thus optimistic for vertical fusion.
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Fig. 9. Depiction of applications and the fusions we apply.

Table 2. Summary of fusions and traffic reductions.

Fusion Coverage Traffic Red.

App #O0ps Vertical Kitsune Vert.  Kitsu.

Inference
DLRM 21 17 (81%) 17 (81%) 2253% 44.27 %
GRC 35  21(60%) 29 (83%) 23.98% 57.20%
MGN 51 36(71%)  41(80%) 56.54% 57.76 %
NERF 24 18(75%) 24 (100%) 40.19% 98.58 %
LL-CTX 27 1037%) 19(70%) 10.04% 49.07 %
LL-TOK 27 1037%) 19(70%) 0.01% 007 %

Training
DLRM 59 18 (31%) 46 (78%) 7.86% 25.07 %
GRC 101 20(20%) 76 (75%) 9.06% 40.06 %
MGN 148 36(24%) 108 (73%) 21.76% 40.26 %
NERF 69 18(26%) 56 (81%) 14.13% 4547 %
LLAMA 88 10(11%) 34(39%) 285% 45.16%

and Kitsune. Traffic savings is useful in itself, as it results in energy/power savings (by downclocking the memory
frequency to sustain the lower bandwidth needs). O’Connor et al. [36] and others [8, 16] have argued that GPUs are

becoming memory power limited.

6.3 Inference Performance

Figure 10 shows the speedup Kitsune provides for each of the subgraphs in each of the applications. Figure 11’s timeline
show the time contributed to overall execution by each of the subgraphs, and in gray we show the time the application
spends in kernels/operators that run in bulk-synchronous mode. Figure 11’s bar-charts show full application speedup.

Overall, sub-graphs speedup range from 1.04x-3.4X across the applications, with a geomean of 1.9x. The least
speedups are for the subgraphs of Llama-Ctx because they are already achieving >50% of machine peak compute and
so do not benefit a lot from operating in spatial mode. NeRF is an example where large speedup is achieved (2.3%),
highlighting many of Kitsune’s benefits: all the nodes of NeRF’s forward pass are spatially fused, allowing most layers

to pull intermediates from a queue instead of main-memory; and the concat operations are free to occupy the SIMT
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Fig. 12. Training subgraph speedups including sensitivity. Dashed lines separate forward and backward passes.

units of the SMs while the GEMMs use the TensorCores. Due to the intermediate sizes, vertical fusion cannot fuse
NeRF’s linear layers>.

When looking at full application performance, we observe two phenomenon: large portions of time are spent in the
sub-graphs (typically > 50%), and a single application has few subgraphs (the black lines in Figure 11 indicate end of a
sub-graph). For end-to-end performance, we see geomean 1.5X speedup. Llama-Ctx shows the least speedups because
its subgraphs’ speedup is modest (4% - 8%), despite its sub-graph coverage in time is 84%.

Takeaway: We find Kitsune provides substantial performance opportunity for DL inference with this generally scaling
with number of fused operations. We observe DRAM traffic is substantially reduced, suggesting higher performance could be

possible without increasing bandwidth.

6.4 Training Performance

Figures 12 and 14 show the corresponding results for training, with training broken down further in terms of the
forward and backward pass. The forward pass is similar to inference, with the added issue of intermediate activations
being stored to main-memory for computing gradients. The backward pass then uses these to compute gradients for

parameters.

3We use the original NERF configuration which uses hidden dim = 256.



Considering end-to-end speedup, we see two trends. As expected, the backward pass takes about 2x the time of
the forward pass. Less fractional time of the backward pass is spent in spatial mode, especially for DLRM, where the
backward pass for the feature interaction which is not spatially fused takes substantial runtime, causing an Amdahl’s
law effect on training back-backpropagation. End-to-end speedups range from only 1.1X to as high as 2.2x.

Takeaway: Kitsune still enables performance gains for Deep Learning training, with lower improvements due to smaller
fusions in the backward pass compared to forward. Because of Kitsune’s ability to parallelize reductions, training benefits

more from spatial fusion compared to the parallelism-limited bulk-synchronous baseline.

6.5 Comparing to Vertical Fusion

Due to the limitations outlined in §3, effectiveness of Vertical Fusion is substantially lower than Kitsune for inference,
with MeshGraphNets showing the best speedup (1.4X) with geo-mean 1.14X (Figure 11). Since it only applies for the
forward pass, training speedups are even lower (Figure 14). Related works like Welder, for inference, have reached
similar findings: when applied to production settings of running with TensorCore and meaningful batch-size (like 32 or
larger), speedups over un-optimized PyTorch (worse than our baseline) is 30% or so, with no speedup over TensorRT
on Nvidia V100 [45]. Those works target additional scenarios like FP32 based computation (thus eliding our overlap
opportunity) and edge-case scenarios like batch-size=1, which are less important in production data-center deployment.
Philosophically they target improvements through software in the configuration space where GPUs are inefficient
(bs=1, fp32 mode etc). We focus on production scenarios: batched training and inference using TensorCores to address

inefficiencies.

6.6 Comparing SM and DRAM Utilization

Figure 13 shows a breakdown of application runtime spent with different resource utilization when running with
Kitsune. For inference, comparing to our data in Figure 3, we see 26% and 15% of runtime is spent with both low
utilization for BSP and Kitsune, respectively. For training, we observe on average, Kitsune only spends 18% of runtime
in low utilization compared to 44% for bulk-synchronous. In addition, Kitsune on average spends much more runtime
with just low DRAM utilization for training: 50% vs 23%. This difference is less pronounced for training compared to
inference because training requires more DRAM traffic to save intermediate activations for back-propagation.
Takeaway: We find Kitsune is able to capitalize on the under-utilized resources of the GPU, reducing runtime spent with

low resource utilization for tmost of our applications.

7 Related Work

DL Operator Mapping. Pipeline design for Kitsune is related to the problem of “operator mapping”. This has largely
been looked at in the context of spatially exposed hardware for single operators including works such as TimeLoop [37],
MAESTRO [17], AMOS [60], and CoSA [10], which treat an operator as a transformable loop-nest, and TVM [4] which
lowers semantics expressed with einsums to low-level code.

DL Operator Fusion. Traditional GPU kernel fusion focuses on fusing memory-intensive kernels together [41, 42, 52,
55], and modern DL compilers often support simple operator fusion at the register level [23, 28, 59] or for improving data
reuse for identical and related operators [14, 46, 53]. Building on single-operator mapping, many recent academic works
address vertical fusion including ALCOP [9], Apollo [58], AStitch [62], Chimera [61], Deepcuts [15], GraphTurbo [57],
and Welder [45]. We discuss the capability of AStitch, Welder, and state of art vertical fusion in Section 3. AStitch,

Welder and GraphTurbo all use some notion of an anchor-and-propa-gate scheme to handle streaming compatibility
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Fig. 14. Training End-to-end Speedup over Bulk-Sync.

between fused layers. Kitsune is more composable and general than all of these, being able to fuse many more operators
into co-resident GPU kernels. Other drawbacks and limitations of vertical fusion have been discussed at length in
Section 3.

GPU Multitasking. HFuse [20] presents a methodology for horizontal fusion which can leverage overlap of hetero-
geneous work but is restricted to only fusing pairs of nodes with no data dependencies. Works such as ISPA [56]
and SMK [54] provide a pure software, and hardware-codesign solutions (respectively) for achieving fine-grained
multitasking on GPUs. SMK uses hardware mechanisms to enable preemption of CTAs on the SM for “partial context
switching” — the goal of which is achieve higher overall utilization of SM resources with heterogeneous CTAs. ISPA uses
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a pure software approach for co-scheduling pairs of Tensor-heavy and SIMT-heavy kernels. It uses several software
techniques to promote efficiency of co-occupancy, but ultimately relies on the existing GPU thread scheduler to make
CTA placement decisions. All these approaches focus on co-scheduling just two kernels with no data dependence.
Kitsune enables any number of kernels to co-execute in spatial pipelines with data-dependencies supported by our
queues and relying on a modified CTA scheduler to make smart decisions about placement of CTAs to best utilize SM
resources.

Data-Triggered Execution. WorkGraphs [25] is a recent development in the graphics space to afford data triggered
execution on GPUs. However, it does not address on-chip data-orchestration to maintain cache residency of intermediates.
Additionally, it operates on a level of granularity much smaller than Kitsune, using individual records and shader
invocations as the unit of work. Kitsune in contrast is designed to orchestrate producer-consumer communication
on-chip at a granularity of tensor tiles of around 64KB payloads. Finally, WorkGraphs doesn’t support join operations
with different input record types, vastly reducing the generality and applicability beyond shader pipelines.

8 Conclusion

We observe that the GPU BSP model limits its effectiveness for various important DL workloads, with state-of-art
vertical fusion still leaving performance opportunities untapped. We design and implement Kitsune which enables
synchronous dataflow execution for modern GPUs, leveraging existing support for synchronization and integrating
into both CUDA and PyTorch. It’s only hardware modification is extension of the GPU grid scheduler to be aware of
affinity of CTAs to the SIMT vs TensorCore units. Kitsune reduces both main memory traffic and end-to-end runtime

across DL networks on GPUs for both inference and training.
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