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Exposing Memory Access Patterns to Improve Instruction

and Memory Efficiency in GPUs
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Modern computing workloads often have high memory intensity, requiring high bandwidth access to mem-

ory. The memory request patterns of these workloads vary and include regular strided accesses and indirect

(pointer-based) accesses. Such applications require a large number of address generation instructions and a

high degree of memory-level parallelism. This article proposes new memory instructions that exploit strided

and indirect memory request patterns and improve efficiency in GPU architectures. The new instructions re-

duce address calculation instructions by offloading addressing to dedicated hardware, and reduce destructive

memory request interference by grouping related requests together. Our results show that we can elimi-

nate 33% of dynamic instructions across 16 GPU benchmarks. These improvements result in an overall run-

time improvement of 26%, an energy reduction of 18%, and a reduction in energy-delay product of 32%.
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1 INTRODUCTION

GPUs continue to be widely used in throughput computing, leveraging high compute density and
energy efficiency. While traditionally used for high-performance computing, GPUs are now also
being used widely for data center applications and the emerging field of machine learning. Each
of these fields continue to demand more compute to solve larger and more complex problems,
requiring computer architects to design subsequent generations of GPUs with more capabilities
while remaining at the same or lower power budget. While this challenge can be partially met
by leveraging smaller manufacturing processes and scaling existing architectures to fully utilize
larger transistor budgets, exploiting application behavior remains a large opportunity.

One such opportunity is to leverage GPU application memory access patterns to improve per-
formance and reduce energy. While GPU applications often have well-defined memory access
patterns, modern GPUs currently have limited support for exploiting those patterns. The most
prominent existing support for patterns lies in memory access coalescing across a group of threads
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known as a warp. When a memory instruction executes and reaches the L1 cache, the set of
addresses across the warp is used to access the cache. To maximize performance, the programmer
attempts to write the application such that the set of addresses across the warp is contiguous and
aligned to a cache line. Such an organization of addresses within a warp promotes the best possible
L1 cache performance, allowing cache hits to access a single cache line from the L1 cache while also
allowing cache misses to be coalesced into a single miss request. However, coalescing techniques
are limited in scope and there are other remaining memory access patterns that can be accelerated.

This article proposes new ISA instructions targeted at common memory access patterns found
across a variety of GPU applications. Given the strength of GPU memory access coalescing across

threads in a warp, the new instructions focus on patterns within a single thread. Specifically, we
identify strided and indirect memory access patterns that are prevalent in many data-parallel al-
gorithms and architect new vector instructions that exploit those patterns. We implement the
instructions in hardware with modifications to the load/store functional unit and warp scheduler,
and enable substantial energy savings and performance improvement.

We identify two significant benefits to exploiting memory access patterns using the new GPU
instructions: reduced address generation instructions for more efficient execution, and reduced
memory interference for better exploitation of memory locality. Both address generation over-
head and memory request interleaving are problems unique to GPUs due to the single-instruction

multiple-thread execution model and throughput-oriented design not found in CPUs. Currently,
GPU instructions dedicated to address generation make up a substantial portion of total instruc-
tions, up to 50% in some memory-intensive workloads. These instructions are a costly overhead for
using the memory subsystem, with each instruction demanding scheduling and fetch resources,
reading and writing the register file, and executing in the functional units within the compute
pipeline. Similarly, the massive number of warps executing concurrently on GPUs can also lead to
missed opportunities to exploit memory locality. While a memory access stream for a single warp
may have inherent data locality in the L1 cache, L2 cache, and DRAM row buffers, this locality
can be lost as multiple warps arbitrate for shared resources and become interleaved. Leverag-
ing memory access patterns to group together related memory requests can help prevent inter-
ference, preserving memory locality and providing substantial runtime and energy consumption
improvements.

2 GPU ARCHITECTURE OVERVIEW

Figure 1(a) presents the high-level view of a modern GPU compute architecture. The GPU chip
is divided into three parts: the Streaming Multiprocessors (SM) made up of compute lanes and L1
cache, the memslice banks consisting of L2 cache banks and memory controllers connected to
DRAM channels, and the on-chip network.

The SM as depicted in Figure 1(b) consists of instruction fetch and scheduling resources,
pipelined functional units, a large register file, an L1 data cache, a miss buffer and coalescing hard-
ware, and a shared memory scratchpad. The SM operates as a single-instruction multiple-thread

(SIMT) processor, with a single instruction being fetched and executed across a group of 32 threads
(known as a warp). Each thread executes in lockstep with the rest of the threads in the warp, per-
forming computation and generating memory requests. Warps can cooperatively work together on
shared data in a software entity known as a cooperative thread array (CTA). Many warps execute
concurrently on each SM, competing for shared functional units, L1 cache, and shared memory
scratchpad. The SM’s warp scheduler manages the execution of the collection of warps, interleav-
ing instructions from different warps to tolerate functional unit and memory latency.

The load/store unit generates the memory addresses when a warp issues a load or store in-
struction on the SM (Figure 1(c)). Depending on the instruction type, either the L1 cache or the
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Fig. 1. GPU system diagram, including detail of the Streaming Multiprocessor (b), SM’s load/store functional
unit (c), and DRAM memory interface (d). Shaded areas are modified by this work.

shared memory scratchpad receive the addresses. For addresses sent to the L1 cache, cache misses
coalesce into the minimum number of cache lines required to service the instruction, and the SM
sends the resulting L1 cache miss requests to the on-chip network.

Memory requests from the SMs arbitrate at the on-chip network for service by the memslice
banks. Requests that can be immediately serviced by the L2 cache banks return to the SMs, while
L2 cache misses enter the memory controller and are stored in the request buffer for DRAM sched-
uling (depicted in Figure 1(d)). DRAM channels consist of row buffers which act as a cache for the
most recently accessed row in a memory bank. The DRAM memory controller prioritizes memory
requests that access data currently found in a row buffer (i.e., row buffer hits) using a policy such
as first-ready first-come/first-serve (Rixner et al. 2000) to maximize memory bandwidth.

3 MEMORY REQUEST OVERHEADS AND INEFFICIENCIES

This section discusses two limitations of current GPUs: the address generation instruction over-
head required to make memory requests, and destructive memory request interference at the SM
and on-chip network levels. To generate a single load or store request, multiple integer instructions
are often required to calculate the address, resulting in additional activity and energy consumption
in the SM. Memory request interference occurs at the SM and on-chip network due to arbitration
policies promoting fairness among the many concurrently executing warps. These two limitations
are a major cause of overhead in GPU application slowdown.

3.1 Address Generation Overheads

Address generation is an expensive side effect of making a memory request. Multiple instructions
may be required to generate a single request, each of which requires access to the L1 instruction
cache, reads and writes to the main register file, and functional unit activity, which can include
expensive logic such as integer multiplication. For GPUs, each thread in a warp must separately
generate addresses for its own memory accesses, compounding the overhead significantly. The du-
plication of address calculation across threads of a warp is a unique challenge for SIMT GPUs as
traditional single-instruction multiple data (SIMD) processors such as CPUs only require a single
address for vector memory instructions. Therefore, the instructions required for address genera-
tion significantly affect SM energy consumption and instruction scheduling slots.

To demonstrate the prevalence of address generation instructions, Listings 1 and 2 present a
simple example using vector addition. Listing 1 shows the CUDA kernel code for vector addition,
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Listing 1. Vector addition kernel in CUDA. Listing 2. Vector addition kernel inner loop in
NVIDIA SASS assembly.

where the arrays are of size Size, and each thread executes a loop across a number of elements.
Listing 2 shows the NVIDIA SASS assembly code for the loop. For vector addition, multiple 32-bit
integer multiply add instructions (IMAD) are primarily used for generating the 64-bit addresses
within the loop as highlighted in bold. In total, 46% of the loop body’s instructions contribute to
address generation.

While non-unrolled vector addition is a simple example, address generation also makes up a
significant amount of total dynamic instructions across complex and optimized code. To further
illustrate this concept, we instrumented a set of CUDA benchmarks (Section 7.3) using SASSI
(Stephenson et al. 2015) to generate dynamic instruction execution histograms by instruction
PC. In order to allocate integer instructions into the address generation (Agen), control (Control),
and compute (Compute_Int, Compute_FP) categories, we further performed a backtrace using the
source registers of relevant instructions. For example, we determined which integer instructions
contributed to address generation by inspecting the backtrace of load and store instructions.

Figure 2 presents a breakdown of dynamic instructions by address generation, memory, control,
and compute categories. While more compute-intensive benchmarks such as mriq and sgemm are
less affected by address generation, address generation instructions in memory-intensive bench-
marks such as kmeans and spmv can exceed 50% of all dynamic instructions. Overall, the instruc-
tions dedicated to address generation dominate, with an average of 42% of all instructions dedicated
to address generation across the benchmarks. The vast majority of these address instructions are
integer addition and integer multiplication instructions, many of which require at least two reads
and one write to the register file.

Given the prevalence of address generation instructions, reducing this instruction overhead is
highly desirable from an energy-efficiency perspective. A main contribution of this work is lever-
aging memory access patterns to significantly reduce this address generation instruction overhead.

3.2 Memory Request Interference

One of the biggest strengths of current GPUs is massive parallelism via many highly threaded
compute cores. By supporting many warp contexts within and across SMs, long chip latencies
resulting from L1 cache misses can often be tolerated without much impact in functional unit
utilization. However, one side effect of having so much parallelism on-chip is that memory requests
are often interleaved among warps. Interleaving can happen at both the SM and on-chip network
levels, which can cause the loss of L1 cache, L2 cache, and DRAM memory locality. While similar
interleaving can occur in CPUs, GPUs can have parallelism orders of magnitude larger leading to
a much greater impact on memory locality.
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Fig. 2. Overhead of address generation instructions
on CUDA benchmarks.

Fig. 3. Memory interference from request inter-
leaving at the SM ((a) and (b)) and the on-chip
network ((c) and (d)). Similarly colored messages
represent different requests bound for the same
DRAM row.

Figure 3 provides high-level examples of how interleaving can result in memory interference
and loss of locality. In the figure, memory requests with the same color are different L1 cache line
requests that map into the same DRAM row, while memory requests with different colors map to
different DRAM rows. To more easily illustrate the phenomenon of memory request interleaving,
in these examples we assume a single DRAM channel, a single DRAM row buffer, and that DRAM
memory requests are serviced in FIFO order. This simplistic model makes the DRAM channel
extremely sensitive to memory request orderings.

Concurrently executing warps in the SM compete for scheduling and execution resources, and
the warp scheduler attempts to fairly allocate resources among warps. Figure 3(a) and (b) present
the scenario where fairness results in destructive memory request interference. In the scenario, two
warps are being actively scheduled on the SM, with Warp 0 having two instructions that generate
L1 cache misses that map to the blue DRAM row, and Warp 1 having two instructions that generate
L1 cache misses that map to the red DRAM row. Figure 3(a) presents the scheduler arbitrating fairly
among the two warps, which results in interference as the two warp requests eventually reach the
DRAM row buffer and thrash with one another. Figure 3(b) shows the ideal scenario, where all
requests from Warp 0 are scheduled together and allowed to reach DRAM unencumbered, enabling
DRAM row buffer locality to be exploited for better bandwidth and energy.

Much like the interleaving of memory requests at the SM level, interleaving at the on-chip
network level can create less than optimal memory request orderings with respect to DRAM row
buffer locality. Figure 3(c) and (d) depict a two-SM, two-DRAM bank system with each DRAM
bank having a single row buffer and bank 0 currently holding the blue row. Figure 3(c) shows that
fairly arbitrating between requests from the SMs results in a memory request ordering where a red
request from SM 1 would cause the blue row to be evicted from the DRAM row buffer, resulting in
a loss in locality when the second blue request from SM 0 later reaches DRAM bank 0. Figure 3(d)
shows the ideal case, with the two requests from SM 0 being arbitrated together by the network,
enabling them to reach DRAM bank 0 and fully exploit row buffer locality.

As illustrated by the examples, keeping similar memory accesses closer together in time is bene-
ficial to better exploit data locality. Grouping memory requests together not only provides benefits
for DRAM but also for the rest of the memory hierarchy, including the L1 cache, L1 miss coalescing,
and L2 cache banks. If interleavings that destroy memory locality can be prevented, both GPU en-
ergy consumption and performance can be improved. We propose new memory instructions that
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avoid SM-level interleaving by issuing multiple related memory requests with a single instruction,
effectively grouping the accesses closer together in time.

4 MEMORY ACCESS PATTERNS AND PROPOSED NEW INSTRUCTIONS

Data parallel applications, such as those written in CUDA, often have well-defined memory access
patterns. In this work, we exploit these patterns using new memory instructions to gain significant
efficiency.

4.1 GPU Memory Access Patterns

We identify two strongly defined patterns found prominently in GPU applications: strided and
indirect memory access patterns.

The strided pattern is a regular sequence of requests consisting of a starting address, stride
or address distance between requests, and number of requests in the sequence. An example of
the strided access pattern is a sequence that can be expressed in the form A[i], where i is a loop
induction variable.

The indirect pattern is a sequence where multiple memory requests are required to access each
element. While irregular indirect sequences such as those found in some graph traversals are not
well defined, some regular indirect sequences are well defined, such as those used in complex data
structures or in gather/scatter operations. Such regular indirect sequences first access a memory
array with a list of indices, then use each of those indices to access elements of a second memory
array. An example of the regular indirect access pattern are sequences that can be expressed in the
form A[B[i]], where i is a loop induction variable.

Figure 4 presents a pattern categorization of memory requests within a single thread of a warp
using the benchmarks found in Section 7.3. This data is gathered by detecting strided and indirect
patterns in the memory instruction stream for each thread using a SASSI instrumentation han-
dler (Stephenson et al. 2015). Instructions are only considered strided or indirect accesses if those
instructions are found within the innermost loop structure, which makes them the most realistic
targets for hardware acceleration. For strided access patterns, detection is performed by inspect-
ing the memory address stream of a memory instruction executed by a thread and checking for a
consistent stride across all accesses. Regular indirect access patterns are detected across multiple
memory requests, by looking at the backslice of instructions contributing to the address. A mem-
ory instruction whose address is generated using a prior load instruction is considered regular
indirect, whereas a memory instruction with a cyclic dependency on itself (e.g., pointer chasing)
is irregular indirect and is not considered for this categorization.

Overall, the majority of the benchmarks have 80% or more of their memory requests fit into
the two patterns. Strided access patterns are the most common and are found in requests to both
shared memory and global memory. The most common stride lengths are 32 and factors of 32,
corresponding to hardware warp width and naturally fitting existing memory coalescing hard-
ware. Indirect memory requests are also an important pattern, being prominent in breadth-first
search (bfs), b+tree traversal (btree), and sparse matrix dense vector multiply (spmv), as well as the
microbenchmark sparse matrix sum (spsum). The remaining memory instructions that cannot be
categorized into the two patterns either access data once without repetition or have long instruc-
tion distances between loop iterations such that the pattern cannot be realistically exploited. For
example, the large CUDA HPC applications comd, hpgmg, and miniamr do not exhibit the strided
or indirect patterns as strongly because a significant number of kernels have irregular control flow
or large loop bodies where the time between inter-PC accesses is prohibitively large.
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Fig. 4. GPU memory access pattern prevalence
for global memory (-Mem) and Shared Memory
(-ShMem).

Fig. 5. ISA specification for new memory instruc-
tions. “%” indicates a register, while “%v_” indicates
a vector register (contiguous set of registers in the
register file).

4.2 New Instructions and Instruction Formats

Motivated by the prevalent strided and indirect memory access patterns, we propose new vector
memory instructions that can directly express these patterns. As opposed to SIMD vector memory
instructions current found in CPUs, the main goal of these instructions is not to exploit instruction-
level parallelism, but rather generate and service memory requests efficiently. We design the in-
structions to leverage existing SM hardware to minimize changes and overhead. Figure 5 presents
the instruction format of the ld.stride, st.stride, ld.indirect, and st.indirect instructions. Effec-
tively, the new instructions combine a group of address generation and memory instructions into a
single instruction, reducing activity in SM scheduler, pipeline, and register file and reducing mem-
ory request interference. The instructions operate on 32-bit floating point and integer data, and
each instruction has three possible vector lengths and can generate 4 to 16 memory requests per
instruction. In general, the new instructions require a vector length for the instruction as spec-
ified by an opcode extension, a starting memory address, source registers for pattern metadata
such as the stride between memory elements, and vector source and destination registers. The
vector source and destination registers are mapped as contiguous regions in the register file, re-
quiring that only the starting register index be provided. As a result, long sequence lengths can be
supported without increasing the existing instruction encoding bitwidth. Similar to current GPU
support for 128-bit loads and stores, the register index must be aligned to a 128-bit granularity.

The ld.stride and st.stride instructions implement a sequence of strided loads and stores and
require the starting address of the data array and the stride between memory elements be provided
as operands. The indirect pattern is captured by splitting the operation into two phases: the index
fetch phase and the data access phase. The index fetch phase is implemented like a strided data
fetch, and thus the ld.stride instruction can be used. Once the indices have been fetched and stored
into the register file, the data access phase is implemented via the ld.indirect and st.indirect

instructions. The ld.indirect and st.indirect instructions use the recently fetched indices to index
into an array, and require the starting address of the data array and a vector of indices be provided
as operands.

5 USING NEW INSTRUCTIONS IN CUDA

In this section, we explain how the instructions are used in practice using Sparse-Matrix Vector

Multiply (spmv) (Stratton et al. 2012) as an example. The code generation method we present is the
same method we use for instrumenting the new instructions into the benchmarks for evaluation.

5.1 SPMV Code Example

Listing 3 shows the inner loop of spmv in its original state in CUDA, unrolled so that each iteration
of the loop operates on four data elements. In this implementation of spmv, each thread of a warp
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Listing 3. Sparse-matrix vector multiply inner
loop.

Listing 4. Sparse-matrix vector multiply inner loop
with new instructions.

is responsible for computing on a single row of non-zero values. In the inner loop, data elements
from the sparse matrix and the dense vector are fetched and multiplied together. The result of the
multiplication is then used to increment a running sum for each row, which becomes a unique
element of the resultant vector at the end of the computation. Memory accesses to the sparse
matrix and the vector require indirect memory addressing, as d_matrix depends on first accessing
d_ptr, while d_vector requires accessing both d_index and d_ptr.

Listing 4 shows the inner loop of spmv using the new memory instructions. The four memory
accesses to d_ptr, d_index, d_matrix, and d_vector are compacted into single instances of the new
memory instructions of length four. The strided and indirect memory instructions are inserted by
the programmer using intrinsics which are equivalent in functionality to existing CUDA intrin-
sics, such as __syncthreads() or __ldg(float* address). In the code listing, __ldstride4() implements
strided loads, while __ldindirect4() implements indirect loads. Four-wide integer and floating point
data types (int4 and float4) are used to interface with the new memory instructions, either as source
or destination variables.

Using the new instructions significantly reduces address generation in this example, particu-
larly for the indirect accesses. In Listing 3, the unique indices for each access of d_index, d_matrix

and d_vector require separate integer addition and multiplication instructions to generate the ad-
dresses. In Listing 4, only the base addresses perform address generation, avoiding the extra integer
instructions. The load/store unit handles the rest of the address generation for the strided and in-
direct instructions as described in Section 6. Similarly, the strided instruction used to access d_ptr

also provides added efficiency.

5.2 Generating Code with New Instructions

Programmer Generation. It is generally straightforward for programmers to leverage these new
instructions in real CUDA applications using the intrinsic functions. As a single strided or indirect
instruction accesses multiple data elements, multiple related memory accesses are needed to utilize
them in practice. Therefore, loop unrolling is the most common source-level code transformation
to expose enough related memory accesses and leverage the new instructions.
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Fig. 6. SM support for new instructions, including an augmented warp scheduler and load/store functional
unit.

Compiler Generation. While we have not yet implemented automated compiler-directed trans-
formations, prior research has shown that compilers can readily identify and exploit the types
of memory access patterns we identify in this article. Software-controlled prefetching effectively
identifies strided memory access patterns, and is implemented on GPUs (Pouchet et al. 2013; Wu
2002; Mowry et al. 1992; Gornish et al. 1990; Yang et al. 2010). Furthermore, automated vector-
ization identifies strided and gather/scatter patterns and has matured such that common com-
piler frameworks such as GCC and LLVM leverage the transformations (Kennedy and Allen 2002;
Franchetti et al. 2005; Larsen and Amarasinghe 2000; Lattner and Adve 2004).

6 ARCHITECTURE MODIFICATIONS TO SUPPORT NEW INSTRUCTIONS

This section details the hardware support for these new memory instructions, which includes
modifying the warp scheduler to stage operand reads from the register file and augmenting the
load/store functional unit. Our general approach is to utilize existing pieces of the SM architecture
and minimize the number of changes to GPU hardware. We also discuss how the new instruc-
tions interact with the SM’s L1 cache and miss coalescing logic. Figure 6 presents the SM’s warp
scheduler, register file, and a single lane of the load/store functional unit.

6.1 Warp Scheduler and Operand Fetch

Current GPU hardware allows fetching of four contiguous registers in the register file per cycle
as a single 128-bit source operand, provided that the registers are aligned to a 128-bit granularity.
To avoid modifying the register file, we leverage this existing register file bandwidth to quickly
provide source operands for our new instructions, similar to existing LD.128 and ST.128 instruc-
tions (NVIDIA 2018c; AMD 2016). Depending on the new instruction and the number of operands
required, operand fetch is staged over several cycles. Therefore, the warp scheduling logic is mod-
ified to wait until all operands are fetched and sent to the load/store unit before allowing another
instruction to issue.

Figure 6 presents the general flow of operand fetch for the new memory instructions. The first
instruction issue cycle fetches the starting address and metadata such as the stride between el-
ements (1). Strided loads can be completely issued in a single cycle as ld.stride instructions only
require the starting address and stride. All other instructions require store data or index data and
must fetch additional operands. In subsequent cycles, four operands are fetched per cycle leverag-
ing the existing bandwidth of the register file (2). The total number of cycles to completely issue
the instruction depends on the instruction type and length. st.stride and ld.indirect instructions
need either store data or index data, resulting in two issue cycles for vector length 4, three issue
cycles for vector length 8, and five issue cycles for vector length 16. For st.indirect instructions,
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both store data and indices are needed, requiring three issue cycles for vector length 4, five issue
cycles for vector length 8, and nine issue cycles for vector length 16. While the multiple cycles
required to issue some instructions (particularly stores) may seem significant, those instructions
still result in significant performance and energy benefits, as discussed in Section 8. In practice,
the lower-overhead load instructions are much more commonly used across the benchmarks.

6.2 Load Store Unit Augmentation

We modify the load/store unit depicted in Figure 1(c) to support the new instructions. Whereas
the baseline load/store unit has an integer adder and a shifter for handling offsets, our augmented
functional unit adds additional latches, muxes, and a finite-state machine (FSM) to control multi-
cycle instruction execution. The general strategy of the augmented load/store unit is to generate
sequence addresses iteratively. For example, with new memory instructions of length four, four
addresses will be generated and sent downstream to the L1 cache or scratchpad memory, one
address per cycle. Depending on whether the instruction is a load or store, the generated address
is either paired with corresponding destination register or store data element before being sent to
the SM’s memory subsystem.

After operands have been loaded, the FSM controls address generation depending on instruction
type. For ld.stride and st.stride memory instructions, the starting address and stride are loaded into
the two latches. The FSM controls iteration, selecting 0x0 from the multiplexer to pass the starting
address through the adder as the first address generated by the instruction. The FSM sends the
result of the adder downstream and updates the latch storing the current address to prepare for the
next iteration of address generation. Subsequent addresses are generated by the FSM controlling
the multiplexer to add the stride to the current memory address. For indirect memory instructions,
the FSM iterates over the index values one at a time, adding the index value (shifted for 32-bit data
size) to the base address to generate the address for each memory request.

6.3 SM Memory Interface

No changes to the SM’s memory subsystem are required for the new memory instructions, as the
only change is the order in which addresses appear from the executing warps. Addresses generated
by the augmented load/store unit are sent in warp-wide groups to access either the L1 cache or the
shared memory scratchpad, similar to existing load and store instructions in the baseline architec-
ture. When the addresses reach the L1 cache, any misses attempt to be coalesced into outstanding
miss requests stored in the miss status handling registers (MSHRs).

The main memory benefit of the new instructions is the effect on memory request interleaving
at the warp level. Each new instruction generates 4, 8, or 16 addresses per thread which are sent it-
eratively to the SM’s memory subsystem, effectively grouping together multiple memory requests
from a single warp in time. Grouping together memory requests from the same warp provides
more opportunities to exploit data locality at the L1 cache, L2 cache, and DRAM, as long as the set
of addresses are nearby each other spatially.

7 EXPERIMENTAL METHODOLOGY

7.1 Using New Instructions in CUDA with Modified SASSI Instrumentation Flow

SASSI is a compiler-based instrumentation tool that we use both for collecting instruction traces
for GPU applications and for high-level application characterization (Stephenson et al. 2015). The
general intent of SASSI is similar to popular CPU binary instrumentation tools such as PIN (Luk
et al. 2005), although the instrumentation mechanism is different. SASSI is based on NVIDIA’s
production “backend” compiler, ptxas, that compiles from the PTX (NVIDIA 2018c) intermediate
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Fig. 7. Injecting new instructions in CUDA using modified NVCC and SASSI.

representation to NVIDIA’s binary instruction format, SASS. SASSI is merely a compiler pass in
ptxas that runs after all other compiler passes. When the compiler invokes the SASSI pass, users
can selectively inject new functionality into the program without altering program semantics.

To support the evaluation of our new instructions, we modify the SASSI flow to allow insertion
of our proposed memory instructions as native PTX assembly in each of the CUDA benchmarks
we evaluate. With our modified SASSI flow, researchers can rapidly develop, encode, and execute
novel instructions using generic instruction templates. Essentially, this novel SASSI flow removes
the burden of modifying the compiler for each new proposed ISA execution by automating the
process.

Figure 7(a) depicts our top-down approach, which starts at a high level. We modify our applica-
tions at the CUDA level by adding generic instructions using the standard inline PTX mechanism of
CUDA (NVIDIA 2018b). Unlike the existing inline PTX mechanism, our tool allows users to specify
instructions that do not exist. We have several templates for generic instructions, but common to
all of them is that the templates themselves do not prescribe instruction semantics. Instead, the
templates merely dictate how many destination and source operands the instruction contains, as
well as the types of each operand (e.g., memory, 32-bit integer, floating point). For example, the
generic instruction in (a) uses the template sassi_dss that has one destination operand (“d”), and
two source operands (“ss”).

As (b) shows, when the ptxas compiler lowers CUDA to the compiler’s IR, it treats each generic
inline PTX instruction as a single atomic SASS instruction. This approach has the benefit that it
does not preclude many important compiler optimizations such as register allocation, predication,
and loop unrolling, but at the same time acts as a scheduling barrier providing better control over
how inline instructions are scheduled. Our generic instructions have no associated semantics, and
therefore the compiler cannot freely schedule them safely.

The compiler finalizes the code and completes code generation as if there were a matching SASS
ISA instruction and the associated hardware support for each of our generic instructions. All SASSI
instrumentation passes happen immediately after this code generation, enabling measurement and
instruction trace generation as if the instructions really existed.

The final SASS code is generated after the SASSI instrumentation passes. Since there are no
matching ISA instructions or hardware support, we augment SASSI to convert our generic in-
structions into callbacks to emulation functions. The emulation functions enable the application
to execute on the GPU with correct semantics for the new instructions. As (c) and (d) show, the tool
passes the registers allocated to the instruction’s sources as arguments to the callback function, so
we can separately implement the semantics of the generic instructions in standard CUDA. Users
are free to model arbitrarily complex instructions in CUDA, including those involving multiple
lanes and persistent state.
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Table 1. Performance Model Parameters

Chip 32 SM Partitions, 8 Memslice Partitions

SM Compute
32 lanes (Int/FPU/Agen), 256KB Register File

Max 32 Concurrent Executing Warps
Greedy-then-Oldest Warp Scheduler

SM LSU 4-,8-,16-length New Memory Instructions
SM L1 32KB, 4-way, 128B line, 256 MSHRs, 16 cycles
SM Batching Unit 4 entries, 16-entry store data buffer
On-chip Network 32×8 Crossbar, 16-entry per-input request buffer
MemSlice L2 Bank 256KB, 16-way, 128B line, 48-cycle
MemSlice Mem Controller FR-FCFS, 128 entries

DRAM
8 channels, 16 banks/channel, 32-bit channels
GDDR5: tCAS=12ns, tRCD=12ns, tRP = 12ns

7.2 Performance and Energy Modeling

We leverage SASSI to collect detailed instruction traces which can accurately be replayed in a
performance model. We direct SASSI to add instrumentation code before all of the original SASS
instructions, including the new memory instruction proposed in this work. For each instrumented
instruction, our added instrumentation extracts the following detailed information about each in-
struction executed at the warp level:

(1) Instruction’s opcode
(2) Warp’s active mask
(3) Instruction’s predication state
(4) Instruction’s source and destination register names and data
(5) Memory addresses the instruction touches

Our instrumentation code subsequently “pushes” that information off of the GPU over an in-
memory channel to a CPU thread that is responsible for writing the stream to a trace file.

We built a cycle-accurate trace-driven performance model that consumes the detailed instruc-
tion traces we generate with SASSI. Table 1 presents the parameters for our performance model,
which models the architecture shown in Figure 1. We add the modified warp scheduler and aug-
mented load/store unit to the performance model as outlined in Section 6. The model supports mul-
tiple SMs with instruction fetch, warp scheduling, register scoreboards, functional unit pipelines,
banked shared memory, L1 cache, and miss coalescing. We also accurately model a crossbar, L2
cache banks, memory controller, and GDDR5 DRAM banks.

We model energy consumption by extracting per operation and static energy numbers from a
combination of McPAT (Li et al. 2009) and GPUWattch (Leng et al. 2013) using the configuration
in Table 1. These energy numbers are then combined with activity counts collected in the perfor-
mance model to obtain energy consumed in the system. Such activity includes reads and writes to
memory structures and active cycles for functional units.

7.3 Benchmarks

Table 2 presents the CUDA benchmarks used for evaluation, which represent a range of real ap-
plications, vary in memory access behavior and intensity, and include irregular control flow and
complex data structures. Kernels that operate on a single data element are refactored to operate
on multiple data elements and use looped control flow. All inner loops are unrolled by the factor
enabling the best performance.
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Table 2. CUDA Benchmarks for Evaluation

Benchmark Name Abbr.
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Kernels Augmented {Num. Loops}

Sparse Matrix Sum spsum � � 97.5% neighborListUpdate{1}

Matrix Transpose (NVIDIA 2018a) trans � � 98.2% transposeNoBankConflicts {1}

Vector Addition (NVIDIA 2018a) vadd � 99.7% vectorAdd{1}

BFS Graph Traversal (Che et al. 2009) bfs � � 82.4% kernel{1}, kernel2{1}

B+Tree Graph Traversal (Che et al. 2009) btree � � 81.6% findK{2}, findRangeK{2}

Gaussian Elimination (Che et al. 2009) gaussian � 93.2% fan1{1), fan2{1}

2D Histogramming (Stratton et al. 2012) histo � 78.1%
histo_main_kernel{2},
histo_final_kernel{3}

K-means Clustering (Che et al. 2009) kmeans � 86.2% kmeansPoint{1}

MRI Reconstruction (Stratton et al. 2012) mri-q � 99.7% computeQ_GPU{1},

Needlman-Wunsch (Che et al. 2009) nw � � 88.9%
needle_cuda_shared_1{2},
needle_cuda_shared_2{2}

Matrix Multiply (Stratton et al. 2012) sgemm � 95.8% mysgemmNT{2}

Sparse-Matrix Vector Mult. (Stratton et al. 2012) spmv � � 92.4% spmv_jds{1}

Stencil Computation (Stratton et al. 2012) stencil � � 88.1% block2D_hybrid_coarsen_x{1}

Molecular Dynamics (Heroux et al. 2009) comd � 65.1% eam_force_thread_atom{2}

Geometric Multigrid Method (HPGMG 2018) hpgmg � 74.1%
cheby_smooth_kernel{1),
copy_block_kernel{1}

Adaptive Mesh Refinement (Heroux et al. 2009) miniamr � � 71.1% stencil_cache_separate_halos_flat{2}

Benchmarks are sourced from well-known suites such as Rodinia (Che et al. 2009) and Parboil
(Stratton et al. 2012). We also leverage three benchmarks (comd, hpgmg, miniamr) adapted directly
from large-scale HPC applications (Heroux et al. 2009; HPGMG 2018). These three benchmarks
have many kernels, complex data structures, and range in code footprint size from 15,000 to 30,000
lines of source code. We also evaluate on two microbenchmarks from the CUDA SDK (NVIDIA
2018a) (trans, vadd), and we developed one microbenchmark (spsum) to help evaluate the new in-
direct memory instructions. spsum implements a kernel where each thread performs a summation
of a single row of a sparse-matrix and stores the result in an array.

We augment each of these benchmarks with our new strided and indirect memory instructions
by hand. As mentioned in Section 5.2, we leverage loop unrolling as the key source transformation
to expose enough memory accesses to enable the use of the new instructions. To help assist in
identifying source code locations to modify, we built a memory profiler using SASSI (Stephenson
et al. 2015) which identifies strided and indirect memory patterns and the corresponding lines
in CUDA source code where each pattern manifests as memory operations. The tool allows us to
quickly find candidate locations in the source code for the new instructions. Table 2 shows which
of the new instructions each benchmark utilizes, and what percent of total dynamic instructions
are contributed by the inner loops targeted for the new instructions. The table also shows which
kernels in and how many inner loops are augmented to utilize the new instructions for each of
the new memory instructions.
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Fig. 8. New instruction effect on dynamic instructions.

8 EVALUATION OF NEW INSTRUCTIONS

We evaluate the new memory instructions given the GPU system parameters found in Table 1.
Generally, for the new instruction data presented “+isa,” we compare the best performing vector
length (e.g., 4, 8, or 16) against the baseline. We first discuss the effect of the new instructions
on address generation instructions and memory request interference, followed by a discussion of
performance and energy impact across the benchmarks. We finish our analysis of the new instruc-
tions by discussing the performance effect of vector length, comparison to other work, and area
overheads.

8.1 Address Generation Instruction Reduction

We used SASSI (Stephenson et al. 2015) to collect dynamic instruction counts for the benchmarks
using the instrumentation handler described in Section 3.1. Figure 8 presents the effect of the new
instructions on dynamic instruction counts, comparing benchmarks with a baseline implementa-
tion against an implementation with the new instructions. As expected, we are able to substantially
reduce the total number of instructions, with the majority of the instruction reduction coming from
fewer address generation (i.e., integer) and memory operations, while floating point and control
remain the same.

The total instruction reduction is highly dependent on the instruction mix and type of bench-
mark. Highly memory-bound benchmarks such as bfs, btree, and spmv leverage both the strided
and indirect memory instructions, seeing dynamic instruction reductions of nearly 45%, while
memory-intensive benchmarks with more compute such as histo, kmeans, and nw see reductions
of 20%–32%. Benchmarks that heavily rely on shared memory such as sgemm and stencil do not
see any substantial reduction in integer instructions, as the compiler is able avoid extra address
generation and use immediate values with the shared memory instructions. Similarly, compute-
bound mriq has little address generation to reduce. However, the number of memory instructions
is significantly reduced in those three benchmarks. Finally, the new instructions reduce dynamic
instructions in the large HPC applications comd, hpgmg, and miniamr by 12%–24%.

Overall, across the 16 benchmarks, the geometric mean reduction in dynamic instructions is
33% when using our proposed memory instructions. These reductions correlate strongly to energy
reduction in the SMs, as fewer instructions means less functional unit, pipeline, and register file
activity.

8.2 Reduced Memory Request Interference

We demonstrate the effect of the new memory instructions on the GPU memory subsystem using
our performance model. Figure 9 presents the L1 cache, L2 cache, and DRAM row buffer misses
for the benchmarks augmented with the new memory instructions, normalized to the misses in
the baseline benchmark version. Overall, the ability of the new memory instructions to reduce
interleaving at the SM has a significant effect on reducing interference in the entire GPU memory
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Fig. 9. Total L1 cache misses in the GPU memory system, broken down by location serviced.

Fig. 10. Normalized performance improvement for baseline and new instruction augmented benchmarks.

subsystem. The new memory instructions reduce L1 cache misses by 12%, L2 misses by 10%, and
DRAM misses by 19% on average across the benchmarks.

Similar to the effect on dynamic instructions, the effect on the GPU memory subsystem varies
depending on the benchmark. DRAM-sensitive benchmarks such as kmeans, spmv, and stencil ex-
perience DRAM row buffer hit rate improvements of 5%, 4%, and 4%. Given the large penalty for
missing in the DRAM row buffer, these hit rate improvements significantly improve runtime per-
formance. Other memory-intensive benchmarks such as bfs, nw, comd, and hpgmg mainly benefit
from L1 cache miss coalescing, which reduces the number of misses sent out from the SM. The
ability to group memory requests together in time enables more opportunities to make use of data
brought into the L1 cache before it is evicted. Memory-intensive miniamr sees an increase in L1
cache misses, but a 12% increase in L2 hit rate significantly reduces the number of requests sent to
DRAM, providing a net benefit. Finally, compute-bound benchmarks such as mriq and sgemm see
minimal improvement.

8.3 Performance Evaluation

Performance Improvement. Figure 10 presents the normalized performance improvement of the
new memory instructions for each of the benchmarks. Overall, using the new instructions pro-
vides an improvement (i.e., application speedup) of 26% on average. This improvement comes from
reduced dynamically executed instructions and reduced memory request interleaving at the SM
level, which reduces memory interference and improves hit rates in the L1 cache, L2 cache, and
DRAM row buffers as discussed in Section 8.2.

For memory-intensive benchmarks, the DRAM hit rate has the most influence over performance.
Memory-bound benchmarks such as vadd and btree experience the lowest performance improve-
ment at 9% and 10%. vadd is a DRAM-bound program more easily captured by the existing DRAM
scheduling hardware, while for btree the memory requests are more irregular accesses to DRAM
memory. Irregular memory-intensive benchmarks that have a lot of data reuse such as bfs and
spmv see improvements of 42% and 31% due to reduced memory request interleaving which leads
to fewer misses in the L1 and L2 caches. For memory-intensive benchmarks with regular access
patterns such as histo, nw, comd, and hpgmg, the increased memory hit rates (particularly at DRAM
row buffers) improve performance by 21% to 35%.

For benchmarks that are compute-bound or spend a lot of time in shared memory such as
sgemm, stencil, and mri, the performance improvements are 30%–35%. The biggest effect on perfor-
mance for these benchmarks is the reduction in dynamic instructions, which enables the compute
operations to issue more frequently. Once the new memory instructions are issued, memory loads
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Fig. 11. Normalized runtime cycles spent for baseline and new instruction augmented benchmarks.

Fig. 12. System energy breakdown for baseline and new instruction augmented benchmarks.

and stores are handled directly from the augmented load/store unit, enabling the compute instruc-
tions to execute decoupled from memory access.

Runtime Cycle Analysis. Figure 11 presents the breakdown of SM runtime for each benchmark in
two categories: cycles spent executing instructions (EXECUTE) and cycles spent stalled (STALL).
SM stalls occur when there are no warps ready to issue, which can happen when instructions are
waiting on memory requests to return or SM resources to be made available (e.g., MSHR slots).
Looking at the data in Figure 11 helps further uncover whether the performance improvement from
the new memory instructions is from reducing dynamically executed instructions (EXECUTE)
or from reduced memory request interference to improve memory subsystem behavior (STALL).
Most of the benchmarks are memory-intensive, and thus spend the majority of stall cycles wait-
ing on memory requests to return. On average, both benefits of the new instructions contribute
strongly to the overall performance improvement, as 41% of the improvement is due to reducing ex-
ecuted instructions, while the other 59% of the improvement comes from reducing memory request
interference.

For compute-bound benchmarks such as mriq and sgemm, performance improvement is closely
related to reducing dynamic instructions. Both algorithms have a substantial number of mem-
ory accesses, but those memory accesses either hit in the L1 cache (mri) or primarily utilize local
scratchpad memory. We expect that other similar compute-bound algorithms would also benefit
from the new instructions. For vadd, kmeans, and miniamr the vast majority of the performance
improvement comes from reduced instructions executed, as the new instructions enable the bench-
marks to spend less time generating addresses and more time servicing memory requests. For the
other benchmarks, the time spent executing and time spent stalled are both reduced with the new
memory instructions. Stall cycles in general see the most reduction, as they represent the reduced
memory access latency through better memory hit rates.

8.4 Energy Efficiency Evaluation

System Energy Consumption. Figure 12 presents a breakdown by source of energy consumption
for each benchmark. Overall, our new instructions are able to reduce total energy consumption
in the system by an average of 18%. The energy benefits of the new memory instructions mainly
affect energy consumption through reduced dynamic instructions and better memory subsystem
behavior.
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Fig. 13. Normalized energy-delay product for baseline and new instruction augmented benchmarks.

Fig. 14. Runtime performance, increasing the number of addresses generated per instruction (vector length).

Reduced address generation and memory instructions significantly affect the dynamic energy
consumption of the SMs, which makes up more than 50% of all system energy consumption. Over-
all, the new memory instructions reduce SM energy consumption by 19% on average. On average,
the new instructions reduce functional unit energy by 18%, register file energy by 28%, and all
other SM energy (SM-Other: instruction fetch, warp scheduling, pipeline energy) by 15%. The ef-
fect varies benchmark to benchmark, depending on how many dynamic instructions are reduced.
Benchmarks that reduce the most address generation instructions (e.g.,btree, kmeans, spmv) expe-
rience SM dynamic energy reduction up to 41%.

Reduced memory request interference leads to significantly better L1 cache, L2 cache, and
DRAM row buffer hit rates, and which also reduces dynamic energy in the memory subsystem.
Overall, dynamic energy in the GPU memory subsystem is reduced by 11% on average, including
reductions in the L1 cache, L2 cache, and DRAM. Across the benchmarks, dynamic energy in the
L1 cache is reduced by 5%, L2 Cache 11%, and DRAM 12%. The DRAM-sensitive benchmarks such
as histo, nw, stencil, and comd see respective DRAM dynamic energy reductions of 22%, 35%, 28%,
and 30% due to significantly improved hit rates throughout the GPU memory subsystem. Finally,
reduction in runtime from better memory subsystem behavior reduces static energy consumption
in the GPU and DRAM by an average of 16%.

Energy-Delay Product Improvements. Figure 13 combines the performance and energy results to
compute the energy-delay product. Overall, the new memory instructions have a large effect on
the system by reducing address generation instructions and memory request interference, reducing
energy-delay product by 32% on average. The benchmark with the biggest improvement is nw with
a 44% reduction in energy-delay product, while the benchmark with the smallest improvement is
btree with an 18% reduction.

8.5 Vector Length Evaluation

Figure 14 presents the performance effect of the new memory vector lengths when generating 4,
8, and 16 addresses per instruction. Some of the configurations are not possible for certain bench-
marks (e.g., histo, nw), as the benchmark’s inner loop cannot be unrolled enough due to lack of
iterations or due to register footprint and SM register limitations.

Generally, increasing the vector length improves runtime performance. This is especially true
for kmeans and stencil, which see increased DRAM row buffer hit rates to improve performance.
Memory-intensive spmv also sees improvement in both runtime and energy consumption, due to
reduced interleaving which increases coalescing of L1 misses. Compute-bound benchmarks mriq
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Fig. 15. Runtime performance for Global memory
(-global) and Shared Memory (-shared) instructions.

Fig. 16. Runtime performance for Strided (-global)
and Indirect Memory (-indirect) memory
instructions.

and sgemm also see increased performance due to a decrease in dynamic instructions as the vector
length increases. As the vector length increases the additional performance benefit diminishes,
which varies depending on the benchmark. While there is clearly a fundamental limit to the num-
ber of address generation instructions that can be removed from the dynamic instruction stream,
there is also a limit to how much reduced memory request interleaving can affect performance. In
theory, a single ld.stride instruction of length 16 can generate enough unique memory requests
to fully utilize a DRAM row of size 2,048 bytes.

8.6 Instruction Type Evaluation

The new memory instructions target strided and indirect memory accesses to both global and
shared memory as shown in Figure 4. We perform experiments to isolate the benefit of the new
memory instructions on each pattern by evaluating runtime performance of the benchmarks that
include a single instruction type.

Global and Shared Memory Instructions. We first investigate the benefits the new instructions
targeting global memory and shared memory on the eight benchmarks that have both types of
memory accesses. Figure 15 presents the runtime performance of the benchmarks augmented with
strided memory instructions for global memory accesses, shared memory accesses, and both global
and shared memory accesses.

In general, we find that for our collection of benchmarks, runtime performance is improved
mostly by targeting global memory accesses. For memory-intensive benchmarks the performance
bottleneck is in the memory hierarchy, as the GPU spends a significant amount of time stalled
waiting on memory results. The new memory instructions targeting global memory are particu-
larly useful for reducing stalls in the memory hierarchy by reducing memory request interference
which enables better exploitation of data locality. On average, global memory instructions en-
able 78% of the total performance benefit on the eight benchmarks. Only more compute-intensive
benchmarks such as sgemm and stencil see a significant improvement when only the strided shared
memory instructions are utilized. sgemm is a benchmark that is especially compute-intensive, and
nearly all memory accesses are shared memory accesses. As mentioned in Section 8.3, reducing
the number of address generation and memory instructions issued enables the frontend of the
pipeline to be more efficient and issue compute instructions more often.

Strided and Indirect Instructions. Figure 16 presents the runtime performance of benchmarks
augmented with strided memory instructions, indirect memory instructions, and both strided and
indirect memory instructions. The four benchmarks presented are bfs, btree, spmv, and spsum as
they utilize both instruction types as found in Table 2.

Overall, the indirect memory instructions contribute 69% of the total runtime improvement
across the four benchmarks. Most of the opportunity to improve performance in these bench-
marks lies in exploiting spatial and temporal locality on data structures such as the vertices in bfs

and btree and the vector data in spmv. These data structures experience data reuse in the form of
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Fig. 17. Comparing performance improvement with Cache-Conscious Wavefront Scheduling and Request
Batching.

multiple requesters accessing the same element, in contrast to elements in the index arrays ac-
cessed once per phase. While the accesses to these data structures are irregular in nature, we find
the high amount of memory interference in the GPU memory hierarchy contributes significantly
to poor memory behavior. The indirect instructions combat memory interference by grouping to-
gether related requests in time to provide a better opportunity to exploit data locality. For example,
sparse matrices that are diagonal in shape are common across a number of applications, and when
computing spmv on such a sparse matrix in compressed sparse-row (CSR) format, computation on
neighboring matrix rows often requires similar data from the dense vector. Considering that work
partitioning in the CSR format is often done by mapping matrix rows to threads, the new instruc-
tions can exploit spatial and temporal locality better by grouping together multiple requests across
threads. We find that similar exploitation of data reuse is achieved in bfs and btree, with the success
of exploiting vertex data reuse being more dependent on the vertex connectivity in the dataset.

8.7 Comparison to Related Work

We compare our new instructions to two related works: cache-conscious wavefront scheduling
(CCWS) (Rogers et al. 2012) and alternative memory access scheduling which batch requests which
map to the same DRAM row (BATCH) (Kim et al. 2011; Yuan et al. 2009). Though CCWS and
BATCH do not affect the dynamic instruction stream of the application, both techniques can re-
duce memory request interference, similar to our new instructions. CCWS deactivates warps in
the warp scheduler that cause contention in the L1 cache, enabling active warps to better utilize
the cache hierarchy. Fewer active warps effectively helps eliminate a source of memory request
interference at all levels of the memory hierarchy. As found in the original CCWS work, cache-
sensitive algorithms are the only applications that benefit much from CCWS, though there is no
real performance penalty for other applications. Our BATCH implementation batches L1 cache
miss requests from a single SM and memory requests across SMs that map to the same DRAM
row into network packets as in prior work. This prior work generally focuses on ways to sim-
plify existing complex DRAM memory scheduler, but in practice BATCH architectures can be
used to improve performance in a wide variety of systems by avoiding both inter- and intra-SM
memory request interleavings. However, one limitation is that the techniques perform batching
dynamically at runtime without knowledge of the application. As CCWS is designed only for L1
cache-sensitive applications and BATCH must attempt to find similar requests dynamically, we
expect their applicability to our benchmarks to be limited.

Figure 17 presents the performance results, including systems that have both the new instruc-
tions and either CCWS or BATCH. As expected, CCWS performs well on several cache-sensitive
benchmarks—spsum, bfs, kmeans, spmv, and comd—averaging a performance improvement of 18%
across those kernels. While BATCH can group together requests across SMs, unlike our proposed
memory instructions, it generally is not able to dynamically find enough DRAM row matches
flowing through the memory hierarchy to outperform the reordering ability of the DRAM mem-
ory scheduler. However, BATCH still sees improvement on bfs, histo, and miniamr, averaging 6%
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improvement on those kernels. While CCWS and BATCH improve performance on several bench-
marks, the new instructions improve performance in all of our benchmarks. As shown in Figure 11,
the new instructions reduce dynamically executed instructions which enables performance im-
provement; both CCWS and BATCH do not reduce execution instructions and cannot capitalize
on this benefit. Exploiting memory access patterns in software using the instructions in general
reduces memory interference more than both CCWS and BATCH. BATCH is limited in its abil-
ity to reduce memory request interference as it only has a small time window to batch together
memory requests bound for the same DRAM row.

CCWS and BATCH are somewhat orthogonal to the new memory instructions, and combining
techniques can provide additive benefits. For example, adding CCWS and our new instructions
provides an additional 2%–4% performance improvement on cache-sensitive benchmarks over the
new instructions alone. In general, our new instructions help reduce the effect of L1 cache con-
tention by keeping similar memory requests together in time, but further reducing contention for
the L1 cache enables additional runtime improvements. Similarly, adding BATCH to our new in-
structions enables memory requests to be further grouped inter- and intra-SM, which in the case of
benchmarks like bfs, stencil, and hpgmg can improve performance by another 6%. Nearly all of the
extra performance benefit comes from the BATCH hardware grouping together similar memory
requests from multiples warps in a single CTA executing on an SM.

8.8 Area Overheads

The extra chip area to implement the hardware required for the new instructions is dominated by
storage elements. Therefore, we sum the storage requirements given the configuration in Table 1 to
compare the overhead to existing structures in the SM. To support the full vector length of 16, the
storage overhead for the functional units is 138 bytes for each lane to store a 48-bit address, 32-bit
stride, sixteen 32-bit indices, and sixteen 32-bit store data elements. The total area overhead of our
techniques is 4.3 kilobytes, or 1.7% of the area of the SM’s 256-kilobyte register file. As the added
area is dominated by the storage for the indices and store data elements, scaling down the vector
length to a 4 or 8 will yield reduced area while still providing significant benefit as demonstrated
in Figure 14.

9 RELATED WORK

Modern GPUs have instructions which can load or store 64 and 128 bits at a time, but require
the memory accesses to be aligned to the requested bit width (NVIDIA 2018c; AMD 2016). Modern
CPUs with SIMD vector units support a variety of gather/scatter instructions. For example, current
Intel processors support both regular and irregular gather/scatter operations using the vgather,
vscatter, vexpand, and vcompress instructions in the AVX-512 ISA (Intel 2016). ARM processors
support vector load and store instruction with fixed stride lengths of two, three, and four (ARM
2013). Other processors with traditional vector instructions or SIMD functional units have pro-
posed strided and gather/scatter loads and stores (Russell 1978; Dunigan et al. 2005; Espasa et al.
2002; Kozyrakis and Patterson 2002). Both the CPU SIMD and other vector architectures provide
similar functionality to existing GPU SIMT warp execution, as each static-length vector instruc-
tion executes multiple operations in parallel on separate functional units. In contrast, our new
memory instructions build upon the efficiency of GPU SIMT warp execution.

Other related work has investigated augmenting the GPU ISA with new instructions to im-
prove efficiency. One such work leverages fused integer instructions, warp-shared scalar instruc-
tions, and SIMD integer datapaths (Gilani et al. 2013), while another focuses on leveraging scalar
datapaths in GPUs (Liu et al. 2017). Another research proposal leverages affine value structure
properties inherent in many SIMT applications to design a new GPU ISA with warp-wide scalar
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instructions (Kim et al. 2013). In this prior research, instruction fusion and scalarization are the
techniques most related to the new memory instructions proposed in this article. While the new
memory instructions also focus on fusing instructions to reduce integer operations, we specifically
focus on how address generation instruction overhead can be mitigated. Additionally, warp-wide
scalar instructions is an orthogonal technique that we expect can apply to the new memory in-
structions we propose.

GPU warp scheduling techniques that improve memory subsystem behavior have been stud-
ied extensively. Techniques that prioritize warps to improve L1 cache and DRAM behavior such
as cache-conscious wavefront scheduling (Rogers et al. 2012) and OWL (Jog et al. 2013) focus on
managing warps that conflict with one another. Other GPU warp scheduling research focuses on
predicting L1 cache footprint to regulate active warps (Rogers et al. 2013) and identifying and pri-
oritizing critical warps dynamically (Lee and Wu 2014; Lee et al. 2015). In general, these proposals
focus on memory-intensive GPU benchmarks, preventing thrashing in the memory subsystem.
While the new memory instructions proposed in our work generate and group requests together
for more effective warp scheduling, the new instructions require no changes to the warp sched-
uling policy. Furthermore, as warp scheduling research is orthogonal to our new instructions, we
expect that the new instructions will benefit from future warp scheduling research.

DRAM memory request scheduling has been an active area of research for both CPUs and
GPUs (Rixner et al. 2000; Mutlu and Moscibroda 2007, 2008). Memory controllers that implement
these proposals attempt to find parallelism in the request stream in order to exploit DRAM row
buffer locality and improve bandwidth and energy. Other related DRAM memory scheduling re-
search propose methods to better schedule and prioritize requests from the SMs in order to avoid
the effects of memory request interference and better exploit DRAM row buffer locality. One prior
work suggests batching an SM’s L1 cache miss requests by DRAM row into network packets (Kim
et al. 2011). Another work focuses on exposing and prioritizing row buffer hits in the on-chip
network (Yuan et al. 2009). While our instructions also prevent interleaving, our work focuses
on improving scheduling within an SM, which does not preclude additional techniques that help
reduce interleaving across SMs.

Strided memory access patterns have traditionally been detected and leveraged at runtime with
hardware prefetchers (Baer and Chen 1995; Fu et al. 1992). Prefetchers have also recently been de-
scribed for indirect memory requests (Yu et al. 2015). GPU implementations of hardware prefetch-
ing have focused on detecting strided patterns at the warp and CTA-level of granularity (Lee et al.
2010; Sethia et al. 2013). Despite the similar focus on memory access patterns, the goals of prefetch-
ing are different than the new memory instructions. First, the new instructions are demand mem-
ory requests and are not speculative in nature like prefetches, which removes any potential time-
liness and accuracy concerns. Secondly, a major goal of the new instructions is to reduce address
generation instructions, which is not a goal of prefetching. However, we believe the address stream
generated by our new instructions may benefit from the memory latency improvement provided
by prefetching.

10 CONCLUSION

Exploiting application patterns and behavior remains a large opportunity to improve compute ca-
pabilities on GPUs. In this article, we focus on common memory access patterns found in GPU
data-parallel workloads and find that there are two major opportunities: reducing address gener-
ation instructions and preventing memory request interference. We propose and implement hard-
ware for new ISA instructions to capture strided and indirect memory request patterns in order
to group L1 cache requests and better exploit data locality in the memory subsystem. Our exper-
imental results show that we can eliminate 33% of dynamic instructions across 16 benchmarks
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and reduce memory request interference in the L1 cache, L2 cache, and DRAM row buffers. These
improvements result in an overall runtime improvement of 26%, an energy reduction of 18%, and
a reduction in energy delay of 32%.
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