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ABSTRACT

We present OUTRIDER, an architecture for throughput-oriented

processors that provides memory latency tolerance to im-
prove performance on highly threaded workloads. OuT-
RIDER enables a single thread of execution to be presented
to the architecture as multiple decoupled instruction streams
that separate memory-accessing and memory-consuming in-
structions. The key insight is that by decoupling the instruc-
tion streams, the processor pipeline can tolerate memory
latency in a way similar to out-of-order designs while rely-
ing on a low-complexity in-order micro-architecture. More-
over, instead of adding more threads as is done in mod-
ern GPUs, OUTRIDER can tolerate memory latency with
fewer threads and reduced contention for resources shared
amongst threads.

We demonstrate that OUTRIDER can outperform single
threaded cores by 23-131% and a 4-way simultaneous mul-
tithreaded core by up to 87% on data parallel applications
in a 1024-core system. Moreover, OUTRIDER achieves these
performance gains without incurring the overhead of addi-
tional hardware thread contexts, which results in improved
area efficiency compared to a multithreaded core.
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Figure 1: Potential performance improvement of
highly parallel benchmarks on a baseline in-order

1024-core design when memory stalls and all re-
source stalls are removed.

1. INTRODUCTION

Execution stalls due to memory latency and bandwidth
constraints are the limiting factor for performance in highly
parallel workloads. Figure 1 presents the impact of exe-
cution stalls on performance for several visual computing
benchmarks on a 1024-core accelerator system by compar-
ing a baseline single-threaded, two-wide issue, in-order pro-
cessor with perfect branch prediction and instruction cache
against two scenarios: the baseline augmented with zero-
latency memory accesses (NO MEMSTALLS), and the base-
line idealized with both zero-latency memory accesses and
zero-latency functional units (NO STALLS). In these sce-
narios, the results from the function units and memory sub-
system are available immediately. Additional information
on the baseline used can be found in Table 1.

We find that most of the performance lost in our 1024-
core system is attributable to the memory system, rather
than fetch, branch prediction, or functional unit latencies.
Removing all stalls due to memory latency more than dou-
bles performance (2.7x), whereas idealizing the entire core
increases performance by 3.6x. This result demonstrates
the impact of the memory system on performance, and indi-
cates the importance of efficient mechanisms for tolerating
memory latency. There have been many proposed solutions
for tolerating these stalls, including data prefetching, more
complex cache hierarchies, multithreading, and more com-
plex core pipelines. In this paper, we focus our attention
on core pipelines. We consider current techniques such as
out-of-order and multithreaded architectures and how they
tolerate memory latency, and what limits their suitability
for deployment in throughput-oriented processors.
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Figure 2: Memory Latency Tolerance Mechanisms
of Out-of-order and Multithreaded Processors.

In this paper, we present OUTRIDER, a novel implemen-
tation of a decoupled architecture that outperforms multi-
threading on highly parallel benchmarks in terms of per-
formance while maintaining a low level of complexity. De-
coupled architectures leverage the compiler to separate a
single thread of execution into multiple instruction streams
that can be executed concurrently. The thread is split into

memory-accessing and memory-consuming instruction streams,

which we call strands. The strands execute in separate
hardware contexts while following the same control path
through the program. Memory-accessing strands commu-
nicate data values from memory to the memory-consuming
strands and have the ability to non-speculatively execute
substantially ahead of the memory-consuming strands, thus
tolerating memory latency.

By leveraging compilation to provide some degree of in-
struction parallelism, decoupled architectures can have less
complex hardware than out-of-order processors. Each strand
executes in-order with respect to itself, but can execute out-
of-order with respect to other strands. Communication be-
tween strands also happens in-order. Thus, large associative
hardware structures are avoided. Additionally, we identify
and propose solutions to avoid performance cliffs and area
efficiency mechanisms which improve resource utilization.

2. MEMORY LATENCY
TOLERANCE APPROACHES

2.1 Out-of-Order Processors

Out-of-order processors (OOQ) enable applications to ex-
ecute instructions out-of-order with respect to one another
by using an associative instruction window. Instructions
that depend on a previous memory access are kept in the
instruction window until the access completes. In the mean-
time, instructions not dependent on that memory access
can be issued. The ability of the OOO processor to tol-
erate memory latency and execute independent instructions
is largely dependent on the number of instructions that can
be stored in the instruction window. Figure 2 shows how in-
creasing the instruction window in OOO processors enables
memory latency tolerance.

In addition to instruction windows, contemporary out-of-

order processors such as Intel’s 17 [22] and IBM’s POWERT [29]

also utilize hardware structures such as reorder buffers, phys-
ical register files, load-store queues, and register renaming to
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Figure 3: Dependency graph for the inner loop of
code adding two vectors. The instructions either de-
pend on memory or do not, and misses in the cache
can lead to significant stalls in in-order processors.

increase the number of instantaneous instructions available
for execution. The associative structures found in OOO pro-
cessors do not scale well, as increasing the memory latency
tolerance usually requires increasing the number of entries
which not only increases the area, but also significantly in-
creases the energy consumed per access. As a result, a sig-
nificant tradeoff of energy efficiency for performance must be
made. Other structures such as large physical register files
and register renaming can require additional pipeline stages
which introduces additional branch mispredict penalties.

2.2 Multithreaded Processors

Multithreaded processors exploit thread-level parallelism
and maintain multiple contexts per core. Multithreaded pro-
cessors tolerate latency by executing instructions from non-
stalled threads while other threads are stalled. In a typ-
ical multithreading scheme, when a cache miss occurs the
current thread is deactivated from scheduling and another
thread available for scheduling replaces it in the scheduler.
GPUs such as NVIDIA’s Tesla [13] and CPUs such as Sun’s
Rainbow Falls [23] utilize high degrees of hardware multi-
threading to increase pipeline utilization, especially during
long-latency memory accesses. Figure 2 shows how increas-
ing the number of threads in multithreaded processors en-
ables memory latency tolerance.

A large number of threads may be required to tolerate
long memory stalls, with each additional thread requiring
significant resources to store its state. The state required
for multithreading includes the hardware architectural space
such as the register file, and cache and memory space which
holds the instruction and data working sets of the thread.
As such, the scalability of multithreading is limited when
area is a concern. An additional register file is required for
each thread, which takes up a significant part of the proces-
sor’s area. Even if the area for the scratch space per thread
is justified, increased cache resources may be necessary in
order to obtain performance gains. If cache resources are
insufficient, contention between the threads can significantly
degrade performance.

2.3 Decoupled Processors
Decoupled architectures separate the memory-access and

memory-consuming instructions into separate instruction streams,

called strands, that are executed on logically separate hard-
ware contexts. These strands execute a part of the original
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Figure 4: Organization of a Decoupled Ac-

cess/Execute processor.

instruction stream and follow the same control flow path
through the program. Strands communicate data and con-
trol flow decisions with one another and must execute to-
gether in order to perform the same program as the orig-
inal sequential thread. Strands are responsible for either
accessing memory or consuming memory values, with par-
titioning occurring along memory dependence lines. In the
simplest case, there are two strands, one accessing mem-
ory and one consuming memory values. Typically, address
generation instructions and memory operations are found
in memory-accessing strands, while floating-point and in-
teger arithmetic are found in memory-consuming strands.
Store instructions are split across both types of strands,
with the memory-accessing strand providing the address and
memory-consuming strand providing the data.

The main advantage of decoupling a sequential thread
into strands is the ability to tolerate memory latency. Fig-
ure 3 shows the dependency graph of the inner loop of code
that adds two vectors together. In this example, only the
floating-point addition (fadd) and store (stw) instructions
are dependent on memory. Consider the situation when the
load (1dw) instructions require a long latency to fill the re-
quest from memory. In-order processors stall when a pri-
mary data cache miss occurs and a dependent operation
is waiting to be issued. Decoupling into separate strands
enables the memory-accessing stream to continue to issue
instructions while the memory-consuming strand waits on
the data to return from memory. Essentially, decoupled ar-
chitectures execute instructions out-of-order, but this par-
allelism is extracted by the compiler from the original pro-
gram, rather than dynamically in hardware which leads to
significantly simpler hardware similar to in-order designs.
However, the complexity increase in software is on the order
of other compiler transformations and utilizes much of the
knowledge the compiler has already. Finally, OUTRIDER has
the ability of multithreading through multiple instruction
streams, but without additional increase of contention for
cache resources.

Strands have their own context of program counter, reg-
ister space, and mechanisms to communicate with other
strands. However, because an individual strand executes
only a portion of an original sequential thread, the context
requirements such as register working set are significantly
smaller. Considering all the strands together, the aggregate
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Figure 5: Loss of decoupling (LOD) events for access
and execute Processors (AP, EP) in DAE architec-
tures.

register working set requirements is on the order of the orig-
inal sequential thread. Working set requirements similar to
the original sequential thread can result in significantly less
complexity to enable memory latency tolerance than out-of-
order and in some cases multithreaded designs. On the other
hand, the compiler must be designed to extract strands from
the original program.

Figure 4 depicts a classical implementation of the Decou-
pled Access/Execute architecture [24] which was the first
published decoupled architecture. The access processor (AP)
and execute processor (EP) are physically separate entities
that are connected only through FIFO data queues for com-
municating data values loaded from memory (AEQ), data
values to be stored into memory (EAQ), and control flow de-
cisions (AEBQ and EABQ). DAE achieves memory latency
tolerance by executing the memory instruction stream on
the AP and the computation program on the EP. The non-
blocking property of the AP requires that the AP calculate
control flow decisions, which it then forwards well in advance
to the EP’s control queue, which is later used by the EP’s
instruction fetch hardware.

3. TRADITIONAL LIMITATIONS

Although decoupled architectures enable memory latency
tolerance, potential performance improvement is limited when
the memory-accessing instruction stream cannot achieve the
nonblocking property with respect to the rest of the pro-
gram. These situations are known as as loss-of-decoupling
(LOD) events [2]. Figure 5 presents the loss of decoupling
events on traditional DAE processors, which represent a de-
pendence between the processors that must be resolved be-
fore the AP is allowed to continue execution. In the opti-
mal case there is no LOD event, and the memory-accessing
stream is not blocked. AP to AP LOD events are caused by
cache misses during indirect memory accesses, such as sparse
matrices and multi-dimensional arrays, where the latency to
access memory is exposed and the AP must stall. When the
AP depends on data provided by the EP, LOD can also oc-
cur. This can be due to the AP needing an address generated
by the EP (EP to AP Address) or the AP waiting on a
control flow decision to be determined by the EP (EP to
AP Control). The AP must wait on the EP to proceed,
which removes the ability of the AP to execute ahead and
tolerate memory latency. LOD events significantly reduce
the usefulness of DAE for programs that exhibit memory
indirection and compute-dependent behavior.
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Figure 6: Handling AP to AP LOD Event in OuT-
RIDER.

Additionally, the under-utilization of resources in tradi-
tional decoupled designs that have separate processors is also
an issue. These designs require separate fetch, decode, and
execute resources, which can instead be shared, reducing
area overheads. For example, memory-consuming strands
may execute integer or floating-point arithmetic, causing
replication of hardware such as multipliers and shift units
between decoupled processors. Traditional fetch resources
such as instruction caches also represent duplicated hard-
ware that can be shared.

3.1 Addressing Memory Indirection

Figure 6 shows our approach to addressing the memory in-
direction LOD. Performance loss due to memory indirection
can be alleviated by adding additional memory-accessing
strands. The original memory-accessing stream can be split
into multiple strands, with the goal of having at least one
instruction stream without LOD. By adding strands, the
amount of decoupling is increased and more parallelism is
exposed. In order to handle compute-generated memory ac-
cesses, we allow floating-point instructions to exist within
a memory-accessing strand, unlike DAE. Using these tech-
niques, we can remove the memory indirection LOD in many
cases and improve performance.

Increasing the number of strands increases the amount of
hardware resources required for OUTRIDER. We find that
many programs have only one or two levels of memory in-
direction, which led us to choose four strands in our design.
In addition to register file and fetch resources required to
support a strand, the number of data queues for commu-
nication increases quadratically with the number of strands
in the system. A certain strand may wish to communicate
with any of the other strands. While this might seem to rep-
resent poor hardware scalability of our technique, we find in
practice that many strands do not communicate with one
or more of the other strands. Additionally, the number of
strands extracted is not fixed, as the compiler can gener-
ate between two and four strands. Communication pattern
information is available when strands are extracted, so we
utilize a dynamically-partitioned buffer and allocate a por-
tion of the space for individual strands’ data queues. The
strand’s FIFO queue is virtualized onto a part of the larger
space. Virtualization enables area efficiency in the case that
space is not allocated to facilitate communication between
two strands when such communication does not exist.
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Figure 7: Implementation diagram of an OuUT-

RIDER architecture.

3.2 Addressing Resource Utilization

Scaling DAE to more than two strands results in many
physical processor entities that have hardware resources such
as instruction fetch that could be potentially shared. Re-
source utilization can be improved by the use of multithread-
ing on a single processor. We propose having a general pro-
cessor with all the functional units and functionality to ex-
ecute memory accessing and memory consuming code, but
with four contexts which each execute a single strand. Be-
cause some software may exhibit memory indirection and
enable multiple strands and some may not, we also propose
dynamically partitioned data queues. When strands are ex-
tracted, a portion of the data queues is allocated to each
strand. These techniques are critical for enabling area effi-
ciency in OUTRIDER and ensure that hardware will not be
left unutilized.

4. oOvurrioer ARCHITECTURE

Figure 7 shows a block diagram of the OUTRIDER archi-
tecture which supports the decomposition of a thread into a
maximum of four strands working concurrently. The dy-
namically partitioned shared communication queue, com-
mon and partitioned thread register files, and the memory
access unit are the main additions to the baseline in-order
core. All structures necessary for achieving high perfor-
mance with OUTRIDER consist of a low number of entries. In
this section we also discuss building stronger memory consis-
tency models. We propose a simple technique for detecting
deadlock induced by software faults and a way to define the
precision of exceptions on a strand-based architecture.

4.1 Communication Queues

Figure 7 presents our implementation for the queues used
for communication between strands. In OUTRIDER, strands
use hardware data queues for general communication or broad-
cast of any value, unlike the special-purpose queues found in
DAE. The partitioned queues utilize pointer tables to vir-
tualize a single buffer into multiple FIFO queues used for
inter-strand communication that can extend across multi-
ple iterations of a loop. The virtualization allows commu-
nication between all pairs of strands. A fixed-size global
data queue is used for broadcasting common values shared
among strands and is primarily used for communicating con-
trol flow decisions between the strands. Strands waiting for
data from the queue are blocked, while other strands con-
tinue execution. The queues can achieve good performance



with a small number of entries because when data is avail-
able on the queue it is likely it will be quickly consumed by
a waiting strand. Additionally, since the strands are mostly
independent, the frequency with which communication oc-
curs is relatively low.

The partitioned communication queues are mapped to ar-
chitectural registers 1, 2, and 3 in the register file enabling
each of the strands to communicate with one another. When
register reads and writes are performed using these registers,
the queue hardware tables are indexed and physical loca-
tions found in the queue. When an instruction whose result
is destined for a queue is scheduled for execution, the issued
instruction is given the current tail pointer value for that
entry as the storage location. By giving the instructions in-
dices as they are issued in-order, we allow instructions to
be executed and written out-of-order into the data queues,
but read in-order. Out-of-order writes into the data queues
is particularly important for allowing instructions with both
variable and static latencies such as loads and ALU opera-
tions to write to the data queues.

Figure 7 shows the communication queues and the hard-
ware tables each strand uses to access their partition, which
is configured by the compiler. For the initial study of OuT-
RIDER we count the number of communication occurrences
between each strand and size proportionally to the total
number of communication occurrences. For strands that
consume but rarely produce data, larger receive queues and
smaller send queues are allocated using special purpose reg-
isters to write the hardware tables.

4.2 Register Files

Figure 7 shows the register file system used in OUTRIDER.
The compiler allocates a portion of the register file to each
strand sized relative to the working register set size by us-
ing a special purpose register to set the starting offset. The
strand then uses architectural register 8-31 to access its por-
tion of the register file. Dynamic allocation enables high uti-
lization of the register file, while allowing flexibility for vary-
ing the number of registers between the strands. This pro-
vides a benefit compared with separate and statically sized
register files for each strand.

Additionally there is a small portion of the register file not
privately owned by a single strand which allows constants
to be shared among the strands, such as the stack pointer.
These shared registers are only safe to be set at barrier syn-
chronizations between the strands and remain unchanged
throughout OUTRIDER execution phases. Strands use archi-
tectural registers 4-7 to directly access the shared portion of
the register file.

4.3 Memory Access Unit and
Memory Ordering

Figure 7 shows the memory access unit (MAU) which en-
ables multiple memory operations to be in-flight simultane-
ously. Each strand has its own load buffer, while the store
buffer is a shared associative buffer that is used to enforce
memory ordering. The low number of store entries that must
be looked up associatively is effective in keeping the design
of the MAU compact. The MAU is shared across all strands
to enable correct memory ordering.

The store buffer is used for memory disambiguation. For
each store instruction found in the original code, each strand
will have either a st_addr or st_data instruction. The

st_data instruction is found in the strand providing the data
for the store, while all other strands have the st_addr in-
structions which provide the address of the original store.
For each store instruction, a single entry in the store buffer
is used. A single store may be completed once each strand is-
sues its corresponding instruction. By requiring each strand
to have either the address or the data, loads can perform
associative lookups into the store buffer to ensure proper
memory ordering

4.4 Handling Stronger Memory Consistency
Models

OUTRIDER provides correct load-store ordering within a
single processor. However, for applications that need to en-
force strict ordering between strands, OUTRIDER utilizes a
pair of synchronizing instructions with full memory fence se-
mantics. The two instructions mem_proceed and mem_wait
are used to signal a particular strand in a single direction
through the communication queues. A strand uses mem_wait
before a memory access to wait for the memory fence, while
another strand executes a mem_proceed instruction to sig-
nal that the fence has been reached and that it is safe to
execute. Utilizing the memory fence can build a stronger
consistency model on top of the relaxed consistency model
that OUTRIDER naturally supports.

4.5 Handling Software Deadlocks
and Exceptions

OUTRIDER is a software threading technique, and deadlock
in OUTRIDER is similar to a software deadlock. Given correct
program semantics and communication between strands, dead-
lock will not occur in OUTRIDER. However, it can occur in
improper code if all strands are waiting on the queue for
data while the queues are empty, or if all strands are wait-
ing to insert data into the communication queues, but all the
queues are full. Hardware detection of deadlock for software
debugging purposes is straightforward, and requires check-
ing to see if all strands are blocked in the aforementioned
case. When deadlock is detected, the pipeline, instruction,
and data queues are flushed and an exception is raised to
allow the runtime system to recover.

Software that targets OUTRIDER is composed of multiple
strands extracted from a single thread of execution. The
concurrent execution of strands requires that one program
counter (PC) be kept for each strand. To enable precise
semantics for faulting memory instructions, we define the
point of the exception in the memory-accessing strand to
occur immediately before the memory access triggering the
fault. The fault is initially stalled and the strand issuing
the faulting instruction is blocked. The memory-consuming
strands are allowed to continue executing until they reach
the instruction dependent on the faulting instruction. At
this point, the fault is delivered precisely across strands
comprising the original thread: at the PC of the faulting
instruction in the memory-accessing strand and at the PC
of the first dependent instruction in the memory-consuming
strand. Recovery from an exception requires addressing the
fault in the memory-accessing strand and restarting it. Do-
ing so causes the memory-consuming strand to unblock and
execution to proceed as normal.
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Figure 8: Diagram of the example code’s dependency graph during phases of strand extraction process.

5. oOutrmmer STRAND EXTRACTION

OUTRIDER depends on compiler extraction of strands from
the original thread by examining the dependency graph and
partitioning the program into memory accessing and mem-
ory consuming instruction streams. For the purposes of this
paper, we perform the partitioning process on leaf node func-
tions which we assume make up the majority of execution
time of data parallel applications. This simplies handling of
parameter and return values, and enables different transfor-
mations on a function-by-function basis which allows addi-
tional flexibility. For simplicity during partitioning, we also
assume that functions we transform output data directly to
the memory system rather than returning a value.

Past research has demonstrated code partitioning and op-
timization [21, 26], and the approach OUTRIDER adopts is
similar. In short, memory dependence chains are identified
and strands are created along memory-access and memory-
consumption lines. The process to extract strands consists of
four phases of strand assignment: loads, stores, and control
flow, unassigned instructions, final partitioning, and hard-
ware mapping.

For the purposes of this paper, manual construction of
strands is performed using the partitioning process presented.
The partitioning process has successfully generated the bench-
marks used in the evaluation section, which includes pro-
grams with memory-indirection and compute-generated ad-
dresses. Using prior research, we have made substantial
progress on automated code generation and find that per-
formance is within 6% on the sobel benchmark. Our au-
tomated code generation results are preliminary, but serve
to provide evidence that automated code generation can
provide performance comparable to manual construction.
Complete details on automated code generation for OuT-
RIDER are outside the scope of this paper.

We provide an example of the strand extraction process
using the inner loop of the sparse-matrix vector multiply of
the cg benchmark. Figure 4.4 presents the partitioning pro-
cess on the dependency graph of original inner loop in which
the addi instruction acts as a loop counter which provides

data for itself and the s11i shift instruction used for calcu-
lating memory addresses.

5.1 Phase 1: Partition Loads, Stores,
and Control Flow

Phase 1 partitions the load, store, and control flow in-
structions into their proper strands in order to achieve de-
coupling. Loads are partitioned into strands according to
how many levels of loads are required to generate its ad-
dress. Control flow instructions should ideally be serviced
in strand 0, then communicated to all other strands. If the
decision cannot be determined by strand 0, loss of decou-
pling will occur. Stores that may alias with loads must have
their addresses calculated in strand 0 in order to prevent
loss of decoupling caused during the distribution of st_addr
instructions. Similarly to partitioning the load instructions,
both the store and control flow instructions are partitioned
by determining how many levels of loads must be traversed.
At this phase, the maximum number of strands to be ex-
tracted is determined, which can potentially be more than
hardware supports. In this case, Phase 4 reduces the number
of strands during hardware mapping.

Figure 8(b) presents the result of the partitioning of Phase 1
on the dependency graph of the example loop from cg. As
both the address of the stw and inputs of the bgt instruc-
tions do not depend on memory, they can be placed in the
lowest level strand, strand 0. As these instructions exist in
all strands, they are partitioned as such. There is a single
level of indirection found in the loop, which results in the
dependent load being assigned to strand 1.

5.2 Phase 2: Partition Unassigned Instructions

Phase 2 uses the identified loads, control flow, and stores
and their assigned strands to identify and partition the ad-
dress generation instructions. The back slice of instructions
from a particular load, branch, or store in the dependency
graph are considered. Only the instructions in the back slice
found before reaching a load operation are considered for in-
clusion in the same strand as the initial instruction. As the
backslice of some loads, branches, and stores inspected may
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add $r8,$r6,$r3
add $r9,$r5,$r3
ldw $r9,$r9,0
ldw $r8,$r8,0
fadd $r8,$r9,$r8
add $r9,$r7,$r3
addi $r3,$r3,4
addi $r2,$r2,1

add $r8,$r6,$r3
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Figure 9: Code example from a scaled vector addi-
tion loop illustrating strand extraction.

share instructions, we give priority to the lower level strand.
In the case that there are address generation instructions
that are shared between strands, the value is communicated
to the other strands in order to reduce circular dependences
and promote decoupling. As a special case, the backslice of
instructions providing data to store instructions are placed
in the highest level strand.

Starting at strand 0, for each load, store, or control flow
at the current strand level:

1. Look backwards in the dependency graph, marking all
unassigned instructions as belonging to this strand.

2. Terminate when an instruction has already been as-
signed.

8. Mark terminating instruction as also assigned to this
strand

5.3 Phase 3: Final Partitioning

With all instructions marked, strands are created. Fig-
ure 8(c) shows the final partitioning of instructions. Loads
and their address generating instructions are included in
their assigned strand, using the data queues to communicate
their resulting values to the dependent strand utilizing copy
instructions. Stores are split, with the address providing in-
struction st_addr assigned to strands 0 and 1 and the data
providing instruction st_data assigned to strand 2, enabling
the compute to pass the data directly to the MAU. Control
flow instructions are assigned to their respective strand, with
the result being broadcast to all the other strands. Branch
instructions which source the globally-communicated deci-
sion are copied to all strands. Instructions that are shared
among strands are placed in the lowest level strand, and
communicated to other strands using copy instructions.

5.4 Phase 4: Mapping Strands to Hardware

During partitioning, more strands can be created than
hardware has resources for. For example, a function with
many levels of memory indirection may generate five strands,
more than the four strands that OUTRIDER supports. In the
case that too many strands are generated for the hardware
to handle, we reduce the number of strands to the maxi-
mum size permitted by hardware by combining some of the
strands.

In general, strands numbers adjacent to one another are
considered for merging together. Specifically, we perform

Core Base 8 stage, 2-wide in-order, 32 entry RF
BTFN branch prediction, 8 entry BTB

OUTRIDER 4 strands, 32 entry shared RF, 32 entry data queue
Multithreading 8 entry instr. queue, 32 entry RF per thread
L1 ICache 2kB 2-way, 1 cycle, 2 Misses, Next-line Pref.
L1 DCache 1kB 4-way, 1 cycle

8 Misses, 8 Loads per strand/thread, 4 Stores
L2 Cache 64kB Shared. 4 cycle, 8-way
Interconnect Two-level tree and crossbar, 16+ cycle latency
L3 Cache 4MB Shared, 32-Bank, 4 cycle, 8-way, Next-line Pref.
DRAM 8 Channels & GDDR5

Table 1: Simulation parameters for our 1024-core
architecture.
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Figure 10: Evaluation architecture

several passes using different priorities. During each pass,
we reduce the number of strands by one. First we identify
loss of decoupling events and merge those strands, as those
strands have the least amount of performance improvement.
Next, strands that contain few instructions incur extra over-
head for communication and control flow, which can hurt
performance efficiency. Finally, we choose the lower level
strands as a last resort to reducing the amount of strands to
the maximum allowed by the architecture.

After the code has been partitioned into strands, the com-
piler is responsible for generating setup code. The number
of strands extracted and resource allocation information is
written to a special purpose register and a command is is-
sued which spawns the threads, at which point they begin
fetching instructions from the initiating thread’s PC. A jump
table is used to direct the strands to the relevant code sec-
tion they are to execute. Strands execute until the function
is finished, at which point decoupled execution is turned off.

5.5 Code Example

Figure 9 presents the inner loop of vector addition exam-
ple code and its partitioning into strands. This code reads in
two vectors, adds them, and stores the result. The original
code is presented alongside the partitioned code, with corre-
sponding instruction even between the two. During Phase 1,
all the loads and stores are identified and heights recorded.
The loads in this example are not memory dependent, and
so they are assigned to strand 0. The store instruction is
split across the two strands, with the address being pro-
vided by strand 0 and the data by strand 1. The control
flow is placed in strand 0, where the result is communicated
to the global queue. The result of this partitioning is that
strand 0 can continue to execute and generate memory re-
quests while strand 1 is still waiting on data from memory
to perform the floating-point addition. As such, memory
latency tolerance is exhibited.
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Figure 11: Overall performance of two-wide in-order
baseline, two-way and four-way SMT, and OuT-
RIDER architecture relative to baseline.

6. EVALUATION

We evaluate OUTRIDER by comparing against traditional
fine-grained simultaneous multithreading (SMT) [27]. We
use the Rigel 1024-core throughput architecture shown in
Figure 10 [10]. The cache hierarchy comprises three levels.
Each core is a two-wide issue in-order with private L1 in-
struction and data caches and a RISC-like instruction set.
Eight cores, an interconnect to a shared unified L2 cache,
and an on-chip network interface form a cluster. The clus-
ters connect to a multi-banked shared last-level L3 cache
through a two-level interconnect network. Groups of four
L3 cache banks share an independent GDDR memory chan-
nel. Table 1 lists the chip and core design parameters.

We evaluate our design on the Rigel simulator infrastruc-
ture, which is execution-driven and models cores, caches, in-
terconnects, memory controllers, and DRAM. Each bench-
mark is executed for at least one billion instructions. For
evaluation, we use a set of six optimized parallel kernels from
scientific and visual computing applications. The bench-
marks exhibit a high degree of parallelism and are written
using a task-based, barrier-synchronized work queue model
similar to Carbon [11], but implemented fully in software
[10]. The benchmarks include conjugate gradient linear solver
(cg), 2D fast Fourier transform (fft), 2D stencil (heat),
k-means clustering (kmeans), medical image reconstruction
(mri), and edge detection (sobel). Benchmarks are decom-
posed into strands manually as shown in Section 5.

6.1 Opverall Performance

Figure 11 compares the performance of OUTRIDER to the
baseline single-threaded core architecture, two-way and four-
way SMT. Figure 12 shows the harmonic mean of the in-
crease in misses observed at the L1, L2, and L3 caches.
Two-way SMT improves performance by 25% over the base-
line, while four-way SMT has mixed results due to a signifi-
cant amount of contention at the L3 cache which counteracts
potential performance gains. Four-way SMT performs best
when contention is kept to a minimum, as in mri. The supe-
rior memory latency tolerance enables OUTRIDER to outper-
form two-way and four-way SMT significantly despite being
a single thread. SMT can tolerate only a small amount
of memory latency tolerance, while increasing contention
for shared resources. OUTRIDER does not significantly in-
crease contention for shared resources over the baseline and

mu
| &)

Normalized Increase In Misses

T
SMT2 SMT4

OUTRIDER

Figure 12: Increase in cache misses in two-way and
four-way SMT, and OUTRIDER architecture relative
to two-wide in-order. Harmonic mean across all
benchmarks is presented.

SMT cores despite executing the same memory stream on
the same amount of cache resources.

The performance gains in OUTRIDER come from both the
SMT interleaving of strands and the memory latency toler-
ance of strands. The interleaving effect is especially clear in
kmeans, where performance is substantially improved using
SMT. Memory-intensive benchmarks such as cg and £ft do
not see as much benefit from OUTRIDER. The lack of much
performance improvement is due to extreme and irregular
memory accesses that result in reduced utilization of cache
resources, a performance limiter also found in the baseline.
On memory-intensive benchmarks such as heat and sobel,
which exhibit locality favorable to our cache hierarchy, OuT-
RIDER outperforms SMT by up to 87%.

6.2 Communication Queue and MAU Sizing

Figure 13 show the mean sensitivity of OUTRIDER to the
size of the communication queues for all benchmarks. We de-
sign OUTRIDER with a 32-entry partitioned communication
queue, and evaluate the sensitivity to reducing or increasing
the number of communication queue entries. We observe
that when data is written into the data queues, it is usu-
ally quickly consumed by a waiting strand. OUTRIDER re-
quires a modest 32 entries to achieve nearly all of the perfor-
mance benefit on the data parallel benchmarks. Our results
for OUTRIDER demonstrate that our proposal can achieve
good performance with 8 misses, 8 loads per strand, and
4 stores in the MAU, allowing for area- and power-efficient
implementation. When scaled down to 4 misses, 4 loads per
strand, and 2 stores the performance loss is only 4%, while
increasing the size of MAU does not generally improve per-
formance for our workloads.

6.3 Cache Latency and Size Sensitivity

Figure 14 shows the mean sensitivity to L.2 cache latency
across all benchmarks. We evaluate how increasing the ac-
cess latency from a baseline 4 cycles affects the performance
of inorder, SMT, and OUTRIDER designs. We find that OuT-
RIDER is not as sensitive to memory latency as the baseline
and SMT cores; a two-way SMT processor with a 16-cycle
L2 cache latency performs as well as OUTRIDER with 64-
cycle L2 Cache latency. SMT cores can only tolerate a small
amount of memory latency per thread, while OUTRIDER’s
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ity study for data queue sizing.

explicit decomposition into non-blocking memory stands en-
ables significantly more memory latency tolerance. In some
cases four-way SMT outperforms two-way SMT as L2 cache
latencies increase, as the additional memory latency toler-
ance provides benefit greater than the degradation due to
L3 cache contention. In some benchmarks, such as mri and
sobel, insensitivity exists up to 64 cycles without significant
performance degradation. OUTRIDER begins to exhibit sen-
sitivity to L2 latency at 32 cycles due to reaching MAU and
communication queue capacity limits. Additional memory
latency tolerance exists in the memory-accessing strands,
and increasing the MAU and communication queue size al-
lows additional insensitivity to latency.

Figure 15 shows the mean sensitivity of OUTRIDER and
SMT to L1 data cache sizing for all benchmarks. We eval-
uate how reducing or increasing the cache size affects the
performance of inorder, SMT, and OUTRIDERdesigns. As
the size of the L1 data cache is increased, all processors
see improvement. The increase in cache size decreases the
amount of cache contention which improves SMT, but the
addition storage space also benefits OUTRIDER and the base-
line. OUTRIDER experiences a larger benefit to increased
cache sizing, as the MAU and L1 data cache can be utilized
more efficiently.

6.4 Ovutriper Overheads

Table 2 presents the amount of added instruction overhead
among the benchmarks. Instructions that copy shared data
between strands, and control flow instructions needed to di-
rect dependent strands make up the overhead. The number
of memory operations and computation instructions remains
the same. The harmonic mean of the instruction overhead
is 14%, which compared with the 62% mean performance
improvement is a performance-overhead advantage. Further
reduction in the branch overhead can be achieved by tradi-
tional techniques such as loop unrolling. While the overhead
can reach 38%, these instructions consume less energy as
compared with memory and floating-point operations, which
dominate the application’s instruction stream.

We use Cacti 6.5 [16] to estimate the area cost for imple-
menting OUTRIDER in a 45nm process. The added struc-
tures are the communication queues, offset tables, instruc-
tion queues, and the MAU. We also model the cost of adding
threads for the SMT processor. The resulting areas are
found in Table 3. For register files and communication
queues we assume SRAM, while for instruction queues, MAU,
and hardware tables we assume latches with size 8 pm? per

study.

bit including overhead. From Table 3, we see that the ma-
jority of area is taken up by the communication and instruc-
tion queues. Past work such as Rigel [10] is able to fit 1024
single-threaded cores in 320 mm? in a 45nm technology. The
total extra area for OUTRIDER compared to such a system is
29.0 mm? or about 9.1%. SMT2 systems require 18.7 mm?
(5.8%) and SMT4 systems require 51.7 mm? (16.2%). As
such, we believe that from a performance per area perspec-
tive, OUTRIDER is a significant improvement over SMT.

7. RELATED WORK

In this section, we discuss other reduced-complexity pro-
cessor architectures that leverage either hardware or soft-
ware approaches to provide some level of memory latency
tolerance. OUTRIDER relies on the compiler to extract par-
allelism instead of costly hardware structures and as a re-
sult does not require duplicated execution of memory access
instructions or compute instructions as found in other de-
signs. OUTRIDER is a proactive and non-speculative mecha-
nism that provides both memory and functional unit latency
tolerance through extracting up to four semi-independent
strands of execution. Additionally, OUTRIDER leverages hard-
ware and software techniques to minimize hardware and in-
struction execution overheads. While other designs require
register files per thread or even processor fetch, decode and
functional units to be replicated, OUTRIDER enables an area
efficient design without this requirement.

7.1 Compiler-Enabled Techniques

VLIW and EPIC processors leverage the compiler to sched-
ule instructions to avoid both functional and memory la-
tency using loop unrolling and speculative code motion [6].
While these designs can remove the need for associative in-
struction windows, these designs require both large regis-
ter files to hold in-flight values and memory disambigua-
tion hardware. Additionally, loop unrolling and code mo-
tion techniques grow the code footprint considerably, which
causes greater impact on accelerator architectures with small
instruction caches per core. Even with speculative code mo-
tion, VLIW and EPIC designs can still be sensitive to mem-
ory latency and can stall if not enough software pipelining is
done. OUTRIDER is a non-speculative technique that toler-
ates all levels of memory latency using completely separate
streams of execution and hardware data queues which store
only in-flight values from long-latency operations as opposed
to every value.



ZoTotal || %Copy | %Branch Ttem Addition ORA Area | SMT2 Area | SMTA Area
cg 14.59% 8.39% 6.19% MAU 8L(per extra strand/thread)x32 6,144 pm? 2,048 pm? 6,144 pm
it 37.82% || 14.74% | 23.08% Reg. Files 39x32 it Nome | 12,071 pm® | 36,214 pum®
heat 14.10% 9.87% 4.22% Comm.Queues 32x32 bit 12,071 pm? None None
kmeans 24.37% 11.30% 13.07% Instr. Queues 8x32 bit 8,192 pm 4,096 pm? 8,192 pum
mri 6.05% 4.03% 2.02% CQ tables (12) 4x5 bit 1,920 pm? None None
sobel 14.29% 13.17% 1.12% RF tables (4) 5 bit 20 pm? None None

| i ey— | 357% ” 3567 | 315% | [ Total [ [ 28,347 pm® [ 18,215 pm” [ 50,550 pm® |

Table 2: Total instruction overhead for
OUTRIDER compared to the baseline in-
order design. OUTRIDER copy instructions
and replicated branch instructions are also
shown.

Decoupled software pipelining (DSWP) is a compiler tech-
nique that creates parallel tasks from loops in sequential pro-
grams [18]. These pipeline-parallel tasks are mapped onto
physical thread contexts in a CMP system, made up of either
high-performance wide-issue out-of-order or VLIW/EPIC
processors that already have some degree of memory latency
tolerance. This is a different motivation than OUTRIDER,
which targets highly parallel systems and applications on
simple in-order processors. DSWP partitions based upon
strongly-connected components in the dependency graph,
while estimating the latency per instruction to combine these
SCCs into the threads run on the processor. Following
this partitioning scheme can result in memory dependences
existing in a single thread which can lead to exposed la-
tency on simple in-order processors. OUTRIDER assumes
that variable-latency memory instructions are the most costly,
and specifically partitions between memory access instruc-
tions and their consuming instructions to avoid exposed la-
tency. DSWP is complementary to memory-latency toler-
ant techniques such as those found in OUTRIDER and can
improve performance [20].

7.2 Pre-execution Techniques

Hardware scout threads were proposed to enable mem-
ory latency tolerance for in-order [3, 5] and out-of-order
designs [17]. This is done be pre-executing the memory
access stream. Hardware scout is not as effective for pro-
grams which have memory indirection. Flea-flicker two-pass
pipelining [1] improves on hardware scout by adding a large
instruction buffer to handle dependent memory operations
and adds a result store buffer to enable the reuse of pre-
executed instructions to combat data dependences. These
schemes duplicate execution of the memory access instruc-
tion stream and only extract two ways of parallelism, and are
sensitive to traditional prefetching concerns such as timeli-
ness and accuracy of speculation. OUTRIDER does not re-
quire duplicate execution of the memory access stream and
is not speculative, while having up to four strands of con-
current execution.

In-order continual flow pipelines (iCFP) [8], and Simul-
taneous Speculative Threading (SST) [4] allow execution to
continue normally under a cache miss by deferring depen-
dent instructions and their operands to a hardware queue.
The deferred instructions are executed once the cache miss
returns. This is an improvement over previous pre-execution
work as no duplicate instruction execution is required ex-
cept under a misspeculated branch dependent on a cache

Table 3: Area overhead of OUTRIDER, SMT2 and SMT4 in regards
to additional storage required.

miss. However, memory disambiguation hardware is re-
quired in order to detect violations. OUTRIDER does not rely
on adding large structures, such as large deferred instruction
queues, or multiple checkpoints to provide memory latency
tolerance. Another difference is that iCFP and SST spend
overhead cycles fetching and decoding instructions only to
defer them to the deferred queue. This is a reactive mech-
anism that can potentially waste issue slots that could be
used for executing independent instructions. By using the
compiler to partition dependent instructions into strands, in-
dependent work can potentially be uncovered more quickly.
iCFP and SST also are limited to extracting only two stream
of execution, while OUTRIDER extracts up to four.

7.3 Helper Thread Techniques

Slice processors [15] implement prefetching by dynami-
cally extracting the memory miss instruction stream and
then executing that stream in parallel with the main thread
to prefetch data. When a miss occurs, the backslice of
instructions is identified that caused the miss. The ex-
tracted stream can then be used to actively prefetch into the
data cache. Like other prefetching techniques, accuracy and
timeliness are not guaranteed and executing the prefetching
instruction stream creates duplication of executed instruc-
tions. OUTRIDER is not speculative and does not prefetch
data, nor does it require duplicate execution of the mem-
ory accessing stream. Slice processors require several large
additional data structures, including a slice cache, an in-
struction stream slicer, and the candidate selector predic-
tor table. OUTRIDER requires much more meager hardware
overheads, only enough to buffer instructions and the data
communicated between strands.

Helper threads [14] instantiate a partial thread of execu-
tion to improve the performance of the main thread. This
thread is either programmer or compiler generated, and can
either run completely independently or be controlled by the
main thread. The main goal of the helper thread is to gen-
erate useful prefetches and warm up the data cache for the
main thread. Similar to other prefetching techniques, helper
threads are sensitive to timeliness and can cause cache con-
tention and thrashing with the main thread if not properly
controlled. OUTRIDER is not a prefetching technique and
is not sensitive as helper threads are. Also, helper threads
duplicate execution of the address generation stream while
OUTRIDER does not.



7.4 Decoupled Techniques

Decoupled access/execute (DAE) provides memory latency
tolerance by partitioning a program into two strands, one for
executing memory instructions and one for executing com-
pute instructions [24]. The programs are run on separate
processors and to handle dependences between compute and
memory, hardware queues are used for message passing com-
munication. Later related work to DAE included investigat-
ing silicon implementations, code partitioning, strand bal-
ancing and memory latency tolerance limitations [7, 9, 12,
25]. While DAE enables parallelism and can allow the mem-
ory thread to provide memory latency tolerance, it is unable
to handle memory indirection or compute dependent mem-
ory accesses which degrade performance. OUTRIDER utilizes
additional strand parallelism to remove this performance
degradation. Additionally, DAE requires in-order comple-
tion of memory accesses into the FIFOs, and restricts data
to only be from loads or to stores. OUTRIDER enables out-
of-order completion of messages and general data commu-
nication through the communication queues. Finally, OuT-
RIDER utilizes SMT to share fetch and execution resources
and enable efficiency not found in DAE.

An alternative design, the Multiple Instruction Stream
Computer (MISC), attempts to improve over DAE by exe-
cuting up to four concurrent strands on separate processors
[28]. However, this design does not ensure correct load-store
ordering between strands and can only have two strands
that access memory. MISC requires 24 statically-allocated
hardware queues, and the efficiency of the MISC design is
degraded if these queues or the separate processors cannot
be fully utilized. OUTRIDER enables all four strands to access
memory with correct memory ordering, which is enabled by
a mixed hardware and software approach to memory aliasing
detection. As with DAE, OUTRIDER utilizes SMT to share
fetch and execution resources and enable efficiency not found
in MISC.

Other contemporary decoupling work involves hardware
partitioning and SMT [19]. In this work, the authors pro-
pose hardware partitioning of integer and floating-point in-
structions into separate threads in order to provide memory
latency tolerance using large instruction queues to hold de-
pendent floating-point instructions while they wait for the
miss to return. These instruction queues needed can be
more than an order of magnitude larger that those required
for OUTRIDER, and this technique is limited to floating-point
applications. Additionally, this technique suffers from mem-
ory indirection and compute-dependent memory accesses,
which OUTRIDER supports. The technique also only sup-
ports SMT of different threads on either the EP or AP, un-
like OUTRIDER which uses SMT across strands.

8. CONCLUSION

In this paper we present OUTRIDER, an architecture for
efficiently tolerating memory latency in highly parallel work-
loads. The memory wall is making memory latency toler-
ance critical to scaling performance on future throughput-
oriented processors. OUTRIDER has the goal of increasing
the efficiency of throughput processors by decoupling the
memory-access streams from the rest of the computation.
Doing so allows for increased concurrency in the memory
system with minimal additional cost over our in-order base-
line micro-architecture and without additional thread con-

texts found in multithreaded architectures. We find that
the key advantage OUTRIDER provides over previous decou-
pled access-execution architectures is the ability to continue
decoupled execution when memory indirection and data-
dependent control flow are present in applications. Our re-
sults comparing OUTRIDER to a conventional multithreaded
architecture show that decoupling an instruction stream into
strands can provide performance advantages of 23-131%.
Our limit studies demonstrate that the hardware overhead
of OUTRIDER structures relative to our in-order baseline can
be modest and much lower than the cost of additional regis-
ter files and increased cache sizing necessary to support more
threads. The result is a micro-architecture for throughput
processors that can provide memory latency tolerance while
relying on a simple in-order pipeline and a lower number of
explicit software threads.
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