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ABSTRACT
This paper considers Rigel, a programmable accelerator ar-
chitecture for a broad class of data- and task-parallel com-
putation. Rigel comprises 1000+ hierarchically-organized
cores that use a fine-grained, dynamically scheduled single-
program, multiple-data (SPMD) execution model. Rigel’s
low-level programming interface adopts a single global ad-
dress space model where parallel work is expressed in a task-
centric, bulk-synchronized manner using minimal hardware
support. Compared to existing accelerators, which contain
domain-specific hardware, specialized memories, and restric-
tive programming models, Rigel is more flexible and provides
a straightforward target for a broader set of applications.

We perform a design analysis of Rigel to quantify the com-
pute density and power efficiency of our initial design. We
find that Rigel can achieve a density of over 8 single-precision
GFLOPS

mm2 in 45nm, which is comparable to high-end GPUs
scaled to 45nm. We perform experimental analysis on sev-
eral applications ported to the Rigel low-level programming
interface. We examine scalability issues related to work dis-
tribution, synchronization, and load-balancing for 1000-core
accelerators using software techniques and minimal special-
ized hardware support. We find that while it is important to
support fast task distribution and barrier operations, these
operations can be implemented without specialized hardware
using flexible hardware primitives.
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1. INTRODUCTION
An accelerator is a hardware entity designed to provide

advantages for a specific class of applications. Accelerators
exploit characteristics of the target domain to deliver some
combination of higher performance, lower power, and lower
unit cost compared to general-purpose processors. Depend-
ing on the domain, accelerators utilize architectural features
such as stream-based data paths, vector processing, exotic
memory systems, and special-purpose functional units tai-
lored to the computation and communication patterns of
target workloads.

Domains including 3D graphics, audio, image, and video
processing find fixed-function logic beneficial because it can
offer significant power, area, and throughput advantages over
programmable logic [7]; programmability is less essential
when the workload can be described by a small, fixed set
of algorithms or encapsulated in an API. Some domains re-
quire programmability for other reasons, such as generality
within a single domain, lack of standards, diversity of com-
putation, or complexity of a fixed-function solution.

Recent commercial and academic activities in GPU com-
puting [20, 21], stream computing [13], and many-core sys-
tems [25] have created an awareness of the application possi-
bilities for programmable compute accelerators that exploit
large degrees of parallelism. Due to their programmabil-
ity, such accelerators can be applied to a variety of domains
that require high computational performance provided the
domains exhibit large amounts of data parallelism. For ex-
ample, applications such as MRI image reconstruction [28],
molecular dynamics simulation [27], and protein folding [5]
have demonstrated 10x or greater acceleration over conven-
tional high-end multi-core CPUs using GPU computing.

Accelerators are architected to maximize throughput, or
operations

sec
, while their general-purpose counterparts are de-

signed to minimize latency, or sec
operation

. Accelerators rely
less on latency-based optimizations such as caching, high-
frequency operation, and speculation to achieve high perfor-
mance. Accelerators are able to achieve an order of mag-
nitude higher throughput/area and throughput/watt com-
pared to CPUs by limiting programmability, supporting spe-
cific parallelism models, and implementing special-purpose
memory hierarchies and functional units. While restricting
the programming model yields high performance for data-
parallel applications that have regular computation and mem-
ory access patterns, it presents a difficult target for applica-
tions that are less regular. GPUs, for example, achieve high
compute density with specialized memories and data paths

140



optimized for processing vectors with hundreds or thousands
of elements. GPUs thus require the programmer to manage
the memory hierarchy and minimize control flow divergence
within groups of parallel threads in order to obtain high
performance. Generally speaking, existing compute acceler-
ators provide higher throughput than CPUs via architectural
choices that often compromise the programming model.

In this paper we provide a rationale, design overview,
and early evaluation of Rigel, an architecture and program-
ming interface for a 1000+ core fine-grained parallel accelera-
tor. The Rigel design strikes a balance between performance
and programmability by adopting programming interface el-
ements found in conventional general-purpose processor in-
terfaces and adapting them for high-throughput execution.
We demonstrate that compromises in development of the
programming interface can be made in a principled man-
ner so that the end product provides high compute density,
scalability, and high performance for a broad class of appli-
cations, while maintaining a general-purpose programming
model that programmers are accustomed to.

In Section 2, we provide a top-down motivation for the
Rigel architecture by deriving a set of elements that we iden-
tify as requirements for the low-level programming interface
to Rigel. We derive these elements based on experimental
observations we have made in the design and development of
the Rigel architecture and software targeting it, on anecdo-
tal experience writing codes for other compute accelerators,
and on constraints placed on the architecture and microar-
chitecture by physical design.

In Section 3, we describe the microarchitectural execu-
tion model for Rigel. We discuss the hierarchical core and
cluster architecture and provide an estimate of the compute
throughput and power based on the mapping of a 1024-core
Rigel design onto 45nm technology. Our analysis is based
on area estimates derived from synthesis of an early RTL
implementation using commercial standard cell libraries, IP
blocks, and a memory compiler. We also describe the mem-
ory model and the cache hierarchy, support for coherence,
and motivate the operations supported by the Rigel instruc-
tion set architecture (ISA) to provide fast synchronization,
globally coherent and locally coherent memory accesses, and
locality management.

In Section 4, we describe the implementation of the low-
level programming interface for Rigel, which we refer to as
the Rigel Task Model. The low-level programming interface
supports enqueing of work into queues, which are resident
in memory, that dynamically distribute units of work across
the chip.

In Section 5, we provide experimental studies of a diverse
set of computation kernels extracted from applications that
require high performance. We show the performance and
scalability of these codes on simulated Rigel configurations
and evaluate the utility of hardware primitives for our design.
We demonstrate that with a modest amount of specialized
hardware for certain elements, we support a dynamic task-
parallel programming model that is flexible and efficient.

2. MOTIVATION AND OBJECTIVES
In this section, we provide a top-down motivation of the

Rigel programming interface which includes the set of func-
tionality to be supported by the architecture and low-level
software of a programmable compute accelerator. Program-
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Figure 1: Software stack for accelerator architec-
tures. API: Application-level Programming Inter-
face, LPI: Low-level Programming Interface, ISA:
Instruction Set Architecture.

mable accelerators span a wide spectrum of possible architec-
tural models. At one end of the spectrum are FPGAs, which
can provide extremely high compute density and fine-grained
configurability at the cost of a very low-level native applica-
tion programming interface (API). The gate-level orientation
of the FPGA interface, i.e., netlist, creates a large semantic
gap between traditional programming languages, such as C
or Java, and the low-level programming interface (LPI). The
semantic gap requires that the programmer make algorith-
mic transformations to facilitate mapping or bear the loss
of efficiency in the translation and often, both. The other
end of the spectrum is represented by hardware accelerators
and off-load engines tightly-coupled to general-purpose pro-
cessors. Examples include TCP/IP and video codec accel-
erators incorporated into systems-on-a-chip. Here the LPI
is an extended version of the traditional CPU LPI, i.e., the
ISA, and thus makes an easier target for programmers and
programming tools.

Akin to an instruction set architecture, the LPI is the in-
terface between the applications development environment
and the underlying software/hardware system of the accel-
erator. The LPI subsumes the ISA: as with any uniprocessor
interface, the accelerator interface needs to provide a suitable
abstraction for memory, operations, and data types. Given
that programmable accelerators provide their performance
through large-scale parallel execution, the LPI also needs
to include primitive operations for expressing and managing
parallelism. The accelerator LPI needs to be implemented
in a scalable and efficient manner using a combination of
hardware and low-level system software.

What is desirable from a software development point of
view is a programmable accelerator with an LPI that is a
relatively small departure from a conventional programming
interface. The LPI should also provide an effective way to ex-
ploit the accelerator’s compute throughput. In this section,
we motivate the tradeoffs made in Rigel between generality
in the LPI and accelerator performance. To that end, we
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describe the elements that we identify as necessary for sup-
porting these objectives. The elements described include:
the execution model, the memory model, work distribution,
synchronization, and locality management.

2.1 Element 1: Execution Model
The execution model is the mapping of the task to be per-

formed, specified by the application binary, to the functional
units of the processor. The choice of execution model is ul-
timately driven by characteristics of the application domain
and its development environment. The overarching goal for
accelerators is for the execution model to be powerful enough
to efficiently support common concurrency patterns, yet be
simple enough for an implementation to achieve high com-
pute density. The execution model encompasses the instruc-
tion set, including its level of abstraction and use of spe-
cialized instructions, static versus dynamic instruction-level
parallelism, e.g., VLIW versus out-of-order execution, and
SIMD execution versus MIMD.

The goal for Rigel is to develop a general-purpose exe-
cution model suitable for compact silicon implementation.
The choice of the SPMD execution model is backed by previ-
ous studies and experience that shows that the SIMD model
imposes undue optimization costs for many irregular appli-
cations. Mahesri et al. [17] show that even considering the
area benefit of SIMD, some parallel applications scale poorly
on long vector architectures, reducing the effective compute
density of the accelerator.

2.2 Element 2: Memory Model
The design of a memory model for a parallel programmable

system involves a choice of memory hierarchy, including software-
managed memories such as those found in the Cell Pro-
cessor [10] or multiple specialized address spaces found in
GPUs [16], as well as choices regarding explicit versus im-
plicit interprocessor communication and allowable memory
orderings. Tradeoffs between these choices are hard to quan-
tify, but it is understood that one can generally reduce hard-
ware complexity, thus increasing compute throughput, by
choosing simpler, software-controlled mechanisms, albeit at
additional complexity in software development.

2.3 Element 3: Work Distribution
When an application reaches a section of code suitable for

parallel acceleration, work is systematically distributed to
available chip resources, ideally in a fashion that maximizes
the throughput of the accelerator. With Rigel, we adopt a
task-based work distribution model where parallel regions
are divided into parallel tasks by the programmer, and the
underlying LPI provides mechanisms for distributing tasks
across the parallel resources at runtime in a fashion that
minimizes overhead. Such an approach is more amenable to
dynamic and irregular parallelism than approaches that are
fixed to parallel loop iterations.

In Section 4 we discuss the actual programmer interface
for the Rigel Task Model, an API for enqueing and dequeu-
ing tasks, supported by a small number of primitives in the
underlying LPI. We show in Section 5 that the Rigel Task
Model can support fine-grain tasks at negligible overhead at
the scale of 1000 cores.

2.4 Element 4: Synchronization
Selection and implementation of synchronization primi-

tives abounds in the literature. Blelloch [2] describes the
generality of reduction-based computations. The implemen-
tation of barriers in particular has been accomplished with
cache coherence mechanisms [18], explicit hardware support
such as the Cray T3E [24], and more recently, a combination
of the two on chip multiprocessors [23]. Using message pass-
ing networks to accelerate interprocess communication and
synchronization was evaluated on the CM-5 [15]. Interpro-
cessor communication using in-network combining in shared-
memory machines such as in the NYU Ultracomputer [9] and
using fetch-and-φ operations as found in the Illinois CEDAR
computer [8] have also been studied. These designs give rel-
evant examples that influence our work as we reevaluate the
tradeoffs of past designs in the context of single-chip, 1000+
core, hierarchical accelerators.

The ability to support fine-grained tasks, and thus a high
degree of parallelism, requires low-latency global synchro-
nization mechanisms. Limiting the scope to data- and task-
parallel computation focuses the support required for Rigel
to two classes of global synchronization: global barrier sup-
port, which is required to synchronize at the end of a paral-
lel section, and atomic primitive support, which is useful for
supporting shared state, such as updating a global histogram
using the atomic increment primitive.

2.5 Element 5: Locality Management
Locality management involves the co-location of tasks onto

processing resources with the goal of increased local data
sharing to reduce the latency and frequency of communi-
cation and synchronization amongst co-located tasks. Lo-
cality management can be performed by a combination of
programmer effort, compiler tools, runtime systems, and
hardware support. In programming parallel systems, per-
forming locality-based optimization constitutes a significant
portion of the application tuning process. An example of
locality management is blocked dense matrix multiply, in
which blocking factors for parallel iterations increase the
utility of shared caches by maximizing data reuse and im-
plicit prefetching across threads while amortizing the cost of
cache misses.

Accelerator hardware and programming models also rely
heavily on locality management. Modern GPUs such as the
NVIDIA G80 make use of programmer-managed local caches
and provide implicit barrier semantics, at the warp-level, us-
ing SIMD execution [16]. The CUDA programming model
allows for the programmer to exploit the benefits of shared
data using the shared memories of the GPU, fast synchro-
nization across warps using __syncthreads primitives, and
the implicit gang scheduling of threads through warps and
thread blocks. Models such as Sequoia [6] and HTA [11]
demonstrate examples of how to manage locality on acceler-
ators such as the Cell and for clusters of workstations.

Memory bandwidth has historically lagged available com-
pute throughput; thus, the memory bandwidth a single chip
can support limits achievable performance [3]. The cost of
communicating across the chip has grown to where it takes
hundreds of cycles to perform cross-chip synchronization or
memory operation between two cores [1]. Because they are
optimized for compute throughput on kernels, accelerators
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tend to have smaller amounts of on-chip cache per core. The
fraction of per-core cache allocated to each processing ele-
ment in modern accelerators, which can be on the order of
kilobytes [16], is a fraction of the megabytes per core avail-
able on a contemporary multicore CPU. The communica-
tion latency, synchronization overheads, and limited per-core
caching are all indicative that the locality management in-
terface is a critical component of an LPI moving forward.

2.6 Low-level Programming Interface
We conclude this section with an overview of the Rigel

LPI, summarizing the points raised in the earlier subsec-
tions. The low-level programming interface to Rigel supports
a simple API for packaging up tasks that are managed us-
ing a work queue model. The individual tasks are generated
by the programmer, who uses the SPMD execution model
and single global address space memory model in specifying
the tasks. It is the responsibility of the work distribution
mechanism, the Rigel Task Model implementation, to col-
lect, schedule, and orchestrate the execution of these tasks.
Execution of these tasks is based on the prevalent Bulk Syn-
chronous Parallel (BSP) [31] execution model, which is also
the de facto model for many other accelerator platforms such
as CUDA-based GPUs. With BSP, a parallel section of tasks
is followed by global synchronization, followed by the next
parallel section.

The Rigel LPI supports task queues as a means to dis-
tribute tasks. Global synchronization is provided by an im-
plicit barrier when all tasks for a given phase of the compu-
tation have completed, forming an intuitive model for devel-
opers. The Rigel LPI also provides a means to implicitly (at
barriers) or explicitly (under software control) make updates
to shared state globally visible before entering a barrier to
provide a coherent view of memory to programmers.

Locality management at the low-level programming inter-
face is provided via a combination of mechanisms to co-locate
groups of tasks to clusters of cores on chip and to manage the
cache hierarchy. Much of the locality management is pro-
vided implicitly by hardware-managed caches that exploit
temporal and spatial locality, as with a typical CPU. A pro-
grammer can tune the effectiveness of these implicit struc-
tures through co-location of tasks to increase reuse of shared
data. To that end, the Rigel LPI supports grouping of tasks
that have similar data access streams, thus increasing the
effectiveness of local caches for co-located tasks. Similarly,
tasks that require local synchronization can be co-located
onto the same cluster of cores, thus synchronizing through
the local caches with less overhead than with global synchro-
nization. To provide explicit control when necessary, the
Rigel LPI supports cache management instructions, explicit
software-controlled flushes, memory operation that bypass
local caches, and prefetch instructions for explicit control
for performance-minded programmers to extract higher per-
formance from the accelerator when desired.

With the LPI for Rigel, we choose to present application
software a general-purpose memory model typical of multi-
core CPUs: a single global address space across the various
cores of the accelerator. The address space can be cached
and is presented to the programmer in a coherent way; how-
ever the actual hardware does not provide coherence directly.
With such a model, managing the memory hierarchy can be
done implicitly by the software. Interprocessor communica-

Figure 2: Diagram of the Rigel processor.

tion is implicit through memory, reducing the semantic gap
between high-level programming and the LPI. Providing im-
plicit support for the memory model creates an implemen-
tation burden on the underlying LPI: if the address space
is cached, which is required to conserve memory bandwidth,
then one needs to consider the overheads of caching and also
coherence, discussed with respect to hardware and software
in Sections 3 and 4, respectively.

3. THE RIGEL ARCHITECTURE
The architectural objective of Rigel is to provide high com-

pute throughput by minimizing per-core area while still sup-
porting a SPMD parallel model and a conventional memory
heirarchy. Density is improved by focusing on the LPI, iden-
tifying which elements of the LPI for Rigel should be sup-
ported directly in hardware versus those that can be sup-
ported by low-level software.

A block diagram of Rigel is shown in Figure 2. The fun-
damental processing element of Rigel is an area-optimized
dual-issue in-order processing core. Each core has a fully-
pipelined single-precision floating-point unit, independent
fetch unit, and executes a 32-bit RISC-like instruction set
with 32 general-purpose registers. Cores are organized as
clusters of eight cores attached to a shared write-back data
cache called the cluster cache. The cores, cluster cache, core-
to-cluster-cache interconnect and the cluster-to-global inter-
connect logic comprise a single Rigel cluster. Clusters are
connected and grouped logically into a tile. Clusters within
a tile share resources on a tree-structured interconnect. Tiles
are distributed across the chip and are attached to global
cache banks via a multi-stage crossbar interconnect. The
global caches provide buffering for high-bandwidth memory
controllers and are the point of coherence for memory.

In this section, we provide a description and an analysis of
the Rigel Architecture. We find that in 45nm technology, a
320mm2 Rigel chip can have eight GDDR memory channels,
32 global cache banks (4MB) and eight tiles of 128 clusters
resulting in 1024 cores across the chip. At a frequency of 1.2
GHz, a peak throughput of 2.4 TFLOPS is achievable. We
show that the peak performance of the chip is comparable to
commercial accelerators scaled to the 45nm process genera-
tion. We show that the achievable performance for a variety
of accelerator kernels enables Rigel to strike a good balance
between a flexible programming interface and high compute
throughput.
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Figure 3: Area estimates for the Rigel Design

3.1 Caching and Memory Model
Cores comprising the Rigel processor share a single address

space. Cores within a cluster share the same components of
the memory hierarchy (except register files) and are thus
coherent by design. Cores in separate clusters, in contrast,
have different cluster caches, and thus require some coher-
ence protocol if the memory hierarchy is to be kept consis-
tent. We describe the mechanism for maintaining coherence
of the cluster caches and the primitive low-level operations
required for supporting the Rigel memory model.

Rigel cores have access to two classes of memory opera-
tions: local and global. Local memory operations are akin
to standard memory operations and are fully cached by a
core’s cluster cache. They constitute the majority of mem-
ory operations and support low latency and high throughput
for data accesses. Values evicted from the cluster cache are
written back to the global cache, which also services clus-
ter cache misses. The cluster and global cache are not kept
coherent in hardware and are non-inclusive, non-exclusive.
Local loads that miss in both the cluster and global cache
are cached in the global cache to facilitate read sharing and
are brought into the cluster cache of the requesting core. Lo-
cal stores are not made visible to the global cache until an
eviction occurs or the data is explicitly flushed by software.
Local operations are used for accessing read-only data, pri-
vate data, and data shared intra-cluster. Per-word dirty bits
are used to merge updates at the global cache and eliminate
the performance penalty caused by false sharing and lost
updates due to partial writes to shared cache lines.

Global operations always bypass cluster caches without
updating its contents. Global memory operations on Rigel
complete at the global cache which is the point of full-chip
coherence. Memory locations operated on solely by global
memory operations are kept inherently coherent across the
chip. Global memory operations are used primarily by the
low-level software to construct synchronization mechanisms
and enable fine-grained inter-cluster communication through
memory, i.e., they are used to implement the LPI. The cost
of global operations is high relative to local operations due
to the greater latency of accessing the global caches versus
the local cluster caches. Furthermore, the achievable global
memory throughput is limited by the global cache port count
and on-chip global interconnect bandwidth.

Software must enforce coherence in the scenarios when
inter-cluster read-write sharing exists. This may be done
by co-locating sharers on a single (coherent) cluster, by us-
ing global memory accesses for shared data, or by forcing
the writer to explicitly flush shared data before allowing the
reader to access it.

Memory ordering on Rigel is defined separately for local
and global memory operations. Global memory operations
are kept coherent across the chip with respect to other global
memory operations by forcing all global memory operations
to complete at the global caches. The ordering between local
and global operations from a single core can be enforced by
using explicit memory barrier operations. A memory barrier
forces all outstanding memory operations from a cluster to
complete before allowing any memory operations after the
memory barrier to begin.

3.2 Coherence and Synchronization
The algorithm used for enforcing cache coherence on Rigel

is not implemented in hardware, but instead exploits the
sharing patterns present in accelerator workloads to enforce
coherence in software using a form of lazy write-through at
barriers. Mutable data shared across clusters on Rigel could
be kept coherent between sharers by forcing all memory ac-
cesses to be made using global operations; however the cost
of using only global memory operations is high and strains
global network and cache resources. One of the key moti-
vations for Rigel is that many accelerator workloads have a
low frequency of inter-core write-shared data between two
consecutive barriers. As an example, Mahesri et al. [17]
demonstrate the relative lack of inter-core shared data on
a set of visual computing workloads similar to what Rigel
targets. Instead, most read-write sharing occurs across bar-
riers, in the form of write-output data. Rigel exploits this
fact by lazily writing back data prior to barriers, avoiding
long-latency global memory operations.

The sharing patterns present in our target workloads allow
Rigel to leverage local caches for storing write-output data
between barriers before lazily making modifications globally-
visible. Lazy updates can be performed as long as coher-
ence actions performed to write-output data are complete
before a barrier is reached. Rigel enables software manage-
ment of cache coherence in two ways. One is by providing
instructions for explicit cluster cache management that in-
clude cache flushes and invalidate operations at the granu-
larity of both the line and the entire cache. Explicit cluster
cache flushes update the value at the global cache, but do
not modify nor invalidate copies that may be cached by other
clusters. The second is broadcast invalidation and broadcast
update operations that allow software to implement data
synchronization and wakeup operations that rely on invali-
dation or update-based coherence in conventional cache co-
herent CMP designs; these operations are discussed further
in the evaluation section of the paper.

3.3 Area and Power Estimates
A goal of programmable accelerators is to provide higher

performance compared to a general-purpose solution by max-
imizing compute density. With an initial RTL implementa-
tion of the Rigel cluster, we provide an area and power esti-
mate on 45nm technology to understand the impact of our
choices on compute density. Our estimates are derived from
synthesized Verilog and include SRAM arrays from a mem-
ory compiler and IP components for parts of the processor
pipeline. For large blocks, such as memory controllers and
global cache banks, we use die plot analysis of other 45 nm
designs to approximate the area that these components will
consume for Rigel. Figure 3 shows a breakdown of prelimi-
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Architecture Power Perf. Machine

Balance

( W
mm2 ) (GOPS

mm2 ) (GBPSP EAK
GOPSP EAK

)

CellBE .3 1.8 .13

Intel Quad-core .5 .4 .25

NVIDIA GTX280 .3–.4 3.3 .14

ATI R700 .55–.9 6.4 .1

Rigel .3 8 .05

Table 1: Power, area, and performance comparison
of Rigel to accelerators normalized to 45nm.

nary area estimates for the Rigel design. Cluster caches are
64kB each (for a total of 8MB) and global cache banks are
128kB each (for a total of 4MB) and are constructed from a
selection of dual-ported (one-read/one-write) SRAM arrays
chosen for optimal area. Cluster logic includes estimates for
core area, including FPU, and the cluster cache controller.
Other logic includes interconnect switches as well as mem-
ory and global cache controller logic. Register files have four
read and two write ports and are synthesized from latches.
Our initial area estimate totals 266mm2. For a more conser-
vative estimate, we include a 20% charge for additional area
overheads. The resulting area of 320mm2 is quite feasible
for current process technologies.

Typical power consumption of the design with realistic ac-
tivity factors for all components at 1.2GHz is expected to be
in the range of 70–99W. Our estimate is based on power con-
sumption data for compiled SRAMs, post-synthesis power
reports for logic, leakage, and clock tree of core and clus-
ter components, and estimates for interconnect and I/O pin
power. A 20% charge for additional power overhead is in-
cluded. Peak power consumption beyond 100W is possible
for Rigel. The figure is similar to contemporary GPUs, such
as the GTX8800 from NVIDIA which has a stated power
consumption of 150W [16], and CPUs, such as Intel’s 8-core
Xeon processor which can reach 130W [22].

In Table 1, we compare our initial area and power esti-
mates to those of comparable accelerators scaled to match
the process generation of the Rigel implementation. The
numbers provided are meant to lend context for our esti-
mates and are subject to parameter variation, such as clock
speed. Early estimates indicate that a Rigel design could
potentially surpass accelerators such as GPUs in compute
density; this is partially due to the lack of specialized graph-
ics hardware. GPUs also spend a substantial portion of
their area budget on graphics-related hardware for texture,
framebuffer, and raster operations that take considerable
area, but do not improve the performance of general-purpose
computation. GPUs also incorporate high levels of multi-
threading which increase utilization, but reduce peak com-
pute throughput. Rigel recovers this area and puts it to-
wards additional compute and cache resources. As expected,
Rigel and other accelerators hold a significant advantage in
compute density compared to general-purpose CPUs, such
as those from Intel [22] and Sun [30].

The Rigel core area estimates are comparable to those of
other simple core designs. Tensilica cores with 8kB SRAM
scaled to 45nm are .06-.18 mm2 [29], approximating a clus-
ter area of .5 to 1.6 mm2. Higher performance MIPS soft-
cores consume .42mm2 scaled to 45nm, and if used to build
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8-core clusters, would approximately occupy 3.5mm2 [19].
Neither match the features of a Rigel core exactly, but both
contain additional features that are not required such as de-
bug ports, MMU components, and peripheral bus interfaces.
Frequency and area depend on many parameters, including
enabled features, synthesis, process, and cell libraries.

4. RIGEL PROGRAMMING MODEL
In this section we describe the task-based API used by

programmers, the Rigel Task Model, and how it maps to the
Rigel architecture.

4.1 The Rigel Task Model API
The software API of the Rigel Task Model is how the

applications developer accesses the LPI. The API is com-
posed of basic operations for (1) managing the resources of
queues located in memory, (2) inserting and removing units
of work at those queues, and (3) intrinsics, such as atomic
primitives, that are supported by the LPI. Applications are
written for the Rigel Task Model using a SPMD/MIMD exe-
cution paradigm where all cores share a single address space
and application binary, but arbitrary control flow among
threads of execution from each core is allowed.

The programmer defines parallel work units, which we re-
fer to as tasks, that are inserted and removed from queues
between barrier operations. We refer to the period between
two barriers as an interval of computation. The barriers
thus provide a partial ordering of tasks. In the Rigel Task
Model, barriers are used to synchronize the execution of all
cores using a queue. Barriers also define a point at which all
locally-cached non-private data modified after the last bar-
rier will be made globally visible using invalidate and flush
operations. From the programmer’s perspective, tasks that
are inserted between two barriers should not be assumed
to be ordered and any inter-barrier write-shared data be-
tween barriers must be explicitly managed by the program-
mer. Figure 4 shows the actions as they would occur during
an interval.

4.1.1 Queue Management
The Rigel Task Model provides the following set of ba-

sic API calls: TQ_Create, TQ_EnqueueGroup, TQ_Dequeue,
TQ_Enqueue. Each queue has a logical queue ID associated

145



with it. TQ_Create is called once for each queue generated in
the system. The call to TQ_Create allocates resources for the
queue and makes it available to all other cores in the system.
Once a queue has been created, any core in the system can
enqueue tasks on the queue or can attempt to dequeue tasks
from the queue. Each basic enqueue and dequeue action
operates on a single task descriptor. The TQ_EnqueueGroup

operation provides a single operation to enqueue a DO-ALL-
style parallel loop similar to the loop operation available in
Kumar et al. [14]. We extend the model adding the notion
of a task group to encompass locality.

An initialized queue can be in one of four states: full,
tasks-available, empty, and completed. Any initialized
task queue without available tasks but without all cores
blocking on dequeue, will be in the empty state. Attempts to
dequeue to an empty queue block. Enqueuing tasks transi-
tions the state of the queue from empty to tasks-available.
When tasks are available, dequeue operations return tasks
without blocking. If cores are blocking on the task queue
during a transition to tasks-available, newly available tasks
are allocated and cores become unblocked. If the queue ex-
ceed its defined size limit, the queue becomes full and any
enqueue operation returns notifying the core attempting the
enqueue of the queue’s full status.

The completed state is used to provide an implicit barrier
in the Rigel Task Model and requires special consideration.
When all cores participating in an interval have finished ex-
ecuting all tasks, they will all begin blocking on the task
queue and the task queue will transition to the completed

state. When the completed state is reached, a barrier is exe-
cuted and all cores are returned a notification that a barrier
has been reached. The semantics of the completed state al-
low work to be generated between barriers and work creation
is not constrained to only occur at the start of an interval.
An example of where this may be useful is in the traversal
of a tree structure where sibling subtrees can be processed
in parallel, but the number of tasks generated is not known
a priori.

4.1.2 Scheduling and Locality
Each task is tracked by a task descriptor. We define a

task group as a set of tasks that are guaranteed by the Rigel
Task Model to execute on a single Rigel cluster. The shared
cluster cache enables low-cost fine-grained communication
amongst the tasks within a task group; a task group can
be thought of as logically executing on a coherent eight-
processor SMP. The number of tasks in a task group can be
tuned by the programmer. Enforcing concurrent execution
of tasks within a task group is possible using cluster-level
barrier operations inserted by the programmer.

As part of the API, we provide performance-minded pro-
grammers with mechanisms to manage locality and work al-
location. We provide an API call to partition work stati-
cally among all cores and have them execute tasks in a data-
parallel fashion. The goal of the data-parallel mode is to
keep the same API, but to allow the LPI to take advantage of
application characteristics to reduce task management costs
known statically, e.g., that an application is highly regular
and does not benefit from dynamic scheduling. Other API
calls allow the programmer to adjust the granularity at which
blocks of tasks are fetched from the various levels of queue.
The hierarchy is otherwise transparent to the programmer.

4.1.3 Atomic Primitives
Atomic primitives are used extensively in the implemen-

tation of the Rigel Task Model runtime where mutual exclu-
sion of accesses to the shared queues must be maintained.
The primitives are also exposed to the programmer as part
of the Rigel Task Model API. The primitives can be used
to implement data structures that require shared updates
during an interval. Operations for atomic increment, decre-
ment, integer addition, and exchange are available to the
programmer using intrinsics in the code. These operations
are perfromed at the global cache and are thus atomic with
respect to other global memory and atomic accesses issued
from all cores across the chip. A global broadcast operation
is provided that allows for one core to update the value of
a word cached in any cluster cache and at the global cache.
The broadcast reduces the traffic requirement for supporting
polling by allowing cores to poll locally at the cluster cache
and receive a new value from the broadcast when it becomes
available thus avoiding the need to use global memory op-
erations to implement polling. Primitives for load-link and
store-conditional are provided by the cluster cache for imple-
menting low-latency synchronization at the cluster. Cluster-
level atomic operations are not kept coherent across clusters.

4.1.4 Implementation
The Rigel Task Model is presented to the programmer

as a monolithic global queue, but is implemented with the
Rigel LPI using hierarchical task queues [4]. The hierarchy
of local and global queues reduces contention and latency
compared to a single global queue implementation as well as
the load imbalance that would be a concern if private task
queues alone were adopted. Queues are resident in memory
and can be cached in the global cache when existing in the
global task queue and at the cluster cache when in the local
task queue. Atomic add operations are used to enqueue
and dequeue tasks. Task descriptors are inserted into the
global task queue after being made globally visible, i.e., by
either being flushed to the global cache or by using global
stores to avoid caching in local caches. As an optimization,
the programmer can specify local enqueing for reduced task
overhead at the cost of potential load imbalance. The barrier
mechanism is integrated as part of the task queue system by
using the same multi-level hierarchy used by the queues to
track completion status.

While task queues in general are not novel, the implemen-
tation of task queues on Rigel presents a relevant case study
in the co-optimization of hardware mechanisms (broadcast
and atomic primitives), a runtime system, and software tech-
niques for applications targeting SPMD hierarchical acceler-
ators. The value of atomic operations and the broadcast
mechanism are evaluated in Section 5 to demonstrate the
benefit of our minimalist approach to hardware support for
task management on an accelerator such as Rigel.

5. EVALUATION AND ANALYSIS
In this section we evaluate design choices made for the

Rigel architecture using a set of accelerator benchmarks rep-
resenting a variety of compute, communication, and memory
access patterns. We demonstrate scaling up to 1024 cores
using software-managed work distribution and synchroniza-
tion while maintaining a conventional programming model.

146



52.1x

27.5x

45.1x

113.3x 114.4x

42.3x

0x

20x

40x

60x

80x

100x

120x

dmm heat kmeans mri gjk cgSp
ee

du
p 

vs
. 1

 C
lu

st
er

16 Clusters (128 Cores) 32 Clusters (256 Cores)
64 Clusters (512 Cores) 128 Clusters (1024 Cores)

Figure 5: Speedup of one, two, four, and eight (1024
core) tile configurations over execution on a single
8-core Rigel cluster. There are sixteen clusters (128
cores) per tile.

In particular, we find that our task-based work queueing sys-
tem can support dequeue and enqueue operations in tens to
a few hundred cycles on average, but the scalability of most
workloads is robust with increased task overhead and that
minimizing these overheads does not always represent the
best tradeoff for performance. We demonstrate that atomic
operations that complete at the global caches, as opposed to
at the cores, and a broadcast notification mechanism for sup-
porting fast barriers to be useful in supporting fine-grained
irregular applications.

5.1 Benchmark Overview and Scalability
Optimized versions of benchmarks targeting the Rigel Task

Model API are used throughout our evaluation. The list of
benchmarks includes: A conjugate gradient linear solver (cg)
performed on sparse matrices from the Harwell-Boeing col-
lection of dimension 4884 (147,631 non-zero elements) repre-
senting a real-word physical system; GJK collision detection
(gjk) for a scene consisting of 512 randomly-generated con-
vex polyhedra of varying size and complexity; An iterative
2D stencil computation that performs a heat transfer simula-
tion (heat) on a 4096x512 element grid; A computer vision
kernel, k-means clustering (kmeans) performed on 16k ele-
ment 18-dimensional data sets; A 1024x1024 blocked dense-
matrix multiply (dmm); And a medical image reconstruction
kernel (mri) derived from the work of Stone et al. [28]. All
simulations are executed for one to five billion instructions
after initialization. The results are from an execution-driven
timing model of the design described in Section 3, includ-
ing the network, caches, memory controllers, and a GDDR4
DRAM model.

Figure 5 shows the scaling of the Rigel benchmark suite
for 128- to 1024-core configurations relative to execution on
an optimistically configured single cluster of eight cores. The
baseline has global cache and memory bandwidth equal to
that of a full tile of 128 cores. Otherwise, global cache and
memory bandwidth scale with the number of tiles. A cluster
of eight cores can achieve roughly 16 GFLOPS (peak) at 1.2
GHz in 2 mm2 at 45 nm. For comparison, a single core from
a contemporary quad-core Intel i7 processor [12] can sup-
port 25 single-precision GFLOPS (peak) using 4-wide SIMD
units at roughly ten times the area and three times the clock
frequency. Therefore, our scalability numbers demonstrate

Rigel’s ability to perform one to two orders of magnitude
better than a conventional multicore with similar power and
area constraints.

Figure 6 displays a histogram of global cache traffic, i.e.,
requests from the clusters. The figures show that each bench-
mark makes use of the caching system in a distinct manner.
Visualizing global cache traffic patterns helps in understand-
ing the tradeoffs in our design and has suggested optimiza-
tion techniques. As an example, the figure for gjk shows
one interval, initially dominated by loading data, then be-
coming limited by global task queue interactions. Using task
prefetching from the global queue and a mechanism for en-
queing directly into the local queue, we were able to achieve
scaling and avoid the pathology demonstrated in the figure.
Due to space limitations, we select a subset of our work-
loads, cg, kmeans, and dmm, that exemplify patterns found
across all of our benchmarks and explain how they map to
the Rigel architecture to illustrate Rigel as a programmable
accelerator.

5.1.1 Conjugate Gradient Linear Solver
The cg benchmark has an interesting memory access pat-

tern for accelerator platforms due to frequent global barriers
and reduction operations. The algorithm comprises a sparse-
matrix vector multiply (SMVM), constituting 85% of the
sequential execution time, followed by simple vector-vector
scaled additions and dot products separated by barriers.

Each element in the large, read-only data array is accessed
only once per iteration while performing the SMVM. Al-
though the matrix is accessed in a streaming fashion, the
vectors that are generated each iteration can be shared by
cores within a cluster to amortize read latency and increase
effective cluster cache size through sharing. The ability to
efficiently exchange the vector modifications each iteration
through the global cache, shown in Figure 6 by the periodic
writebacks from each iteration, significant performance ben-
efit. However, the vectors conflict with the read-once sparse
matrix in the global cache. We make use of a prefetch op-
eration in the Rigel ISA that allows for data to bypass the
global cache thus avoiding pollution for touch-once data not
shared across clusters.

We find that after managing locality and maximizing mem-
ory bandwidth utilization, the ultra-fine granularity of tasks
in cg and the small number of tasks between barriers stresses
the LPI’s ability to not only dequeue tasks, but also enqueue
work fast enough to keep up with the rate at which tasks
complete, and can limit scalability. We find that trading off
a small degree of load imbalance for coarser task granular-
ity in cg reduces the rate of task management operations
translating into reduced contention and better enqueue effi-
ciency (fewer operations enqueue a greater amount of work)
resulting in higher achieved performance for the benchmark;
A similar pattern is found in gjk.

5.1.2 K-Means Clustering
The kmeans benchmark iteratively converges on the set of

k bins in an n-dimensional space that minimize the aggregate
error in the selection of mapping N points in n-dimensions
to the k bins. The distributed reduction operation of kmeans
exploits our ability to perform efficient atomic operations at
the global caches, interleaving updates to the shared his-
tograms with other compute, instead of performing a global
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Figure 6: Three global cache traffic patterns from: kmeans, where atomic operations dominate the global cache
traffic due to a histogram optimization; cg, where writebacks of shared data dominate, but do not saturate
the global cache bandwidth; and gjk, showing high levels of load balancing resulting in global task queue
actions dominating global cache traffic. With tuning we have found most of this overhead can be removed.

reduction at the end of the parallel section. The kmeans

benchmark makes heavy use of atomic operations to remove
a reduction at the end of each parallel region and the pat-
tern is clear from Figure 6. However, due to the high arith-
metic intensity of the benchmark and high reuse in cluster
caches, the increased global cache traffic does not adversely
impact performance. In fact, even with atomics dominating
global cache traffic, the tradeoff provides better performance
at 1024 cores compared to our experiments with using a
global reduction at the end of an interval instead of atomics
at the end of each task. The benchmark also makes use of
software prefetching for object data and the position of the
current set of bins used for computing the next set. The set
of bins is also read-shared by the tasks that execute on a sin-
gle cluster. Grouping of multiple points to execute as part
of a task group, i.e., mapped to a single cluster, and com-
bined to make tasks comprising multiple points is found to
be beneficial from a cache management standpoint as well.

5.1.3 Dense-Matrix Multiply
The dense-matrix multiply benchmark (dmm) has a very

regular data-access pattern with high arithmetic intensity.
The value of dense matrix multiply is that it demonstrates
Rigel’s ability to maximize its effective use of prefetching,
cache management through blocking, read sharing at the
cluster cache using task group formation, staging of data
in the global cache using a combination of prefetching and
added synchronization. Most importantly, dmm shows that
we can support applications amenable to static partitioning
efficiently, though do not make use of the dynamic mecha-
nisms provided by the LPI.

5.2 Rigel Task Model Evaluation
The cost of dequeue and enqueue operations limits the

minimum exploitable task length. Similarly, barrier oper-
ations can be viewed as an overhead limiting the minimum
amount of parallel work that can be done between two global
synchronization points. The load imbalance represents the
ability of the LPI implementation, in both hardware and
software, to compensate for task length variability and the
impact of dynamic system behavior.

Task length is a parameter that can be adjusted by the
programmer. The choice of task granularity is constrained
from below by the minimum size parallel unit of work inher-

Task Length (1000 Cycles)
Benchmark Mean Max Min

dmm 24 511 4.4
heat 124 454 54

kmeans 98 173 41
mri 1607 1664 1585
gjk 23 58 2.6
cg 17 41 0.38

Table 2: Task length statistics (1024 cores)

ently supported by the application and the marginal cost of
generating, scheduling, and synchronizing a task. The choice
to increase task length is constrained from above by load im-
balance brought on by task length variance and by the lack
of parallelism should too few tasks be available to saturate
the processor. Table 2 shows statistics related to task length
used for our study. The task lengths are generally tens to
hundreds of thousands of cycles across all benchmarks, but
can vary greatly from hundreds to millions of cycles (even
within a single benchmark). The variety of task lengths sup-
ports the choice of dynamic task allocation and MIMD ex-
ecution model. The ability to support 1000-way parallelism
with tasks that are thousands of cycles supports our choice
of software task management with limited hardware support.

The high average task lengths, as is found in mri and
heat, lead to infrequent barriers and increased barrier wake
up costs due to the code and data responsible for exiting the
barrier and beginning the next interval often being evicted
from the caches during task execution. The length of tasks
relative to these costs makes the effect on overall perfor-
mance minimal. We measure barrier wake up as the number
of cycles, on average, between the last core entering a bar-
rier until the other cores begin executing after the barrier.
Load imbalance is measured as the average number of cycles
from when one core performs a dequeue operation with the
task queue being empty until the last core enters the barrier.
The cost of load imbalance and barrier synchronization for
each core during one interval of computation are plotted in
Figure 7 as a fraction of a task since the fixed cost is not
borne by each marginal task.

Enqueue and dequeue overheads are a function of param-
eters chosen by the runtime and/or the programmer for the
Rigel Task Model. The minimum per-task cost of an en-
queue and a dequeue can be as little as 44 and 66 cycles,
respectively, while the actual overheads that we find pro-
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Figure 7: The per-task cost of task execution, barriers, enqueue, and dequeue operation are plotted as a
percentage of the average task length in cycles.

vide the best tradeoff for performance and load balancing
are generally higher by a factor of three to ten. Nonetheless,
as Figure 7 shows, the overhead of barriers, enqueue, and
dequeue as a percentage of task length is not more than a
few percent for all runs other than cg. The cg benchmark
is sensitive to task management overhead due to the short
and irregular nature of its tasks, limiting the enqueing cores’
ability to distribute work as fast as the dequeuing cores can
consume it. The contention for cluster-level task queue locks
and access to the cluster caches exacerbates the problem.

Figure 7 also shows that without explicit support for global
synchronization, Rigel is able to achieve low load imbalance
and implement efficient barriers in software. Our experience
tuning both the runtime and benchmarks has demonstrated
that minimizing the absolute costs of task overheads often
leads to lower overall performance. The lower performance
is due to load imbalance and the inability of the runtime
to perform task queue optimizations such as pre-loading of
tasks into the local task queues and intelligent prefetching
from the global task queues.

5.3 Accelerator Primitives
We examine two mechanisms provided by the Rigel ar-

chitecture to support the LPI described in Section 2. In
our work porting applications to Rigel, it has become ap-
parent that components of the LPI can benefit greatly from
hardware acceleration in the form of primitives exposed to
low-level systems programmers via the ISA. Figure 8 shows
the use of two such operations that are particularly helpful
in supporting the task distribution mechanism and synchro-
nization elements of the LPI: broadcast update and global
atomic operations.

The broadcast update operation replaces a function served
by invalidate messages in multi-processors with hardware
cache coherence. The bcast.update instruction reduces the
contention for the barrier completion flag. Without a broad-
cast mechanism, the value of the flag would be polled at the
global cache by the cores already in the barrier. When the
last core enters the barrier, it flips the sense of the global bar-
rier thus allowing other cores polling on that value to proceed
past the barrier. On Rigel, instead of writing the value with

a global store, the last-entering core issues a bcast.update

with the new global sense. The data is sent from the core to
the global cache where it is updated and then a notification
message is sent to all clusters via the cache interconnect.
Each router in the interconnect replicates the update notifi-
cation message to all cores it is connected to. The broadcast
operations may also be used to provide fine-grained shar-
ing between barriers and to support other operations served
by invalidate messages in conventional coherence schemes;
however, such studies are left to future work.

We find that atomic operations, integer accumulate in par-
ticular, are useful in implementing efficient algorithms for
work allocation and scheduling, histogramming, reductions,
barriers, and other synchronization mechanisms. The ex-
posed serial latency is minimized by executing atomic op-
erations at the global caches instead of at the core. The
overhead is a small amount of area for functional units and
some added complexity at each global cache bank. A con-
ventional cache coherent design would require cores issuing
atomic operations to obtain ownership of a line, then to per-
form the modification, and if there are other cores waiting to
access that line, the line must then be sent to another core.

Coherence is used to guarantee atomicity in conventional
multiprocessors at the cost of exposing the latency of highly-
contended values across the chip. Rigel guarantees atomic-
ity by executing the operation at the point of coherence (the
global cache on Rigel). Thus multiple read-modify-write op-
erations can be pipelined through the network instead of
being serialized by cache coherence state transitions. Atom-
ics that execute at the global cache also reduce the number
of network messages for each atomic operation issued, thus
minimizing the latency experienced by a single core and the
contention at the global caches and interconnect.

Figure 8 shows the results of our study for benchmarks
most affected by the broadcasts and global atomics; results
are normalized to the baseline configuration where both are
enabled. The relative benefit of broadcast updates is eval-
uated by replacing them with polling loops that use global
loads/stores to perform the polling/updates at the global
cache. Performance gained from implementing atomics that
execute at the global cache is shown by modifying the im-
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Figure 8: Execution time relative to using both broadcast-update instructions for barriers and operations
that complete at the global cache (baseline).

plementation of all atomics to lock values on read from the
global cache, perform the update locally at the core, and
then store that value back to the global cache and unlock the
value. The implementation is similar to atomic operations
implemented with full-empty bits on the HEP multiproces-
sor [26]. For coarse-grained data-parallel workloads with few
reductions and long intervals between barriers, less than 1%
performance difference is seen and those results are omitted
for brevity.

For kmeans we find that without fast atomic support, per-
formance is degraded by as much as 40% with the differ-
ence from the baseline being more pronounced as the num-
ber of cores scales. cg is most affected by the primitives as
it does a large number of barriers and has a large number
of interactions with global state due to the finer granular-
ity of tasks in the benchmark. The gjk benchmark provides
a counter intuitive result: with accelerator hardware lower
performance is observed. The reduced performance is due
to the flood of messages generated by the broadcast oper-
ations and the stampeding-herd effect a broadcast wakeup
can generate. The latter is an interesting effect observed in
some situations where all cores begin requesting the same
data or code from the global cache in a short period of time.
The correlation of accesses results in heavily loaded areas
of the cache interconnect, global cache, and memory con-
troller buffers. Staggering accesses either from the natural
throttling effects of polling on the global caches or from pro-
grammer intervention, tend to spread out the traffic yielding
higher performance.

6. CONCLUSION
In this paper we motivate, describe, and evaluate a pro-

grammable accelerator architecture targeting a broad class
of data- and task-parallel computation. The Rigel Archi-
tecture consists of 1000+ hierarchically-organized cores that
use a fine-grained single-program, multiple-data (SPMD) ex-
ecution model. The concept of a low-level programming
model is described in the context of a set of elements that
we have found to be requirements for supporting scalable
programmable accelerator applications on our architecture.
These elements include the execution, memory, and work
distribution models as well as synchronization and locality
management.

Our initial findings and evaluation show that, ultimately,
Rigel can achieve a compute density of over 8 single-precision
GFLOPS

mm2 in 45nm with a more flexible programming inter-
face compared to conventional accelerators. Rigel thus of-
fers promise for higher computational efficiency on a broader
class of applications. In support of scalability beyond 1000
cores, we demonstrate experimental results and analysis of
several applications ported to the low-level programming in-
terface for Rigel, the Rigel Task Model. We examine scal-
ability issues with work distribution, locality management,
synchronization, load-balancing, and other overheads asso-
ciated with massively parallel execution. We find that it is
important to support fast task enqueue and dequeue oper-
ations and barriers, and both can be implemented with a
minimalist approach to specialized hardware.

7. ACKNOWLEDGEMENTS
The authors acknowledge the support of the Focus Cen-

ter for Circuit & System Solutions (C2S2 and GSRC), two
of the five research centers funded under the Focus Center
Research Program, a Semiconductor Research Corporation
Program. The authors thank the Trusted ILLIAC Center at
the Information Trust Institute for their contribution of use
of their computing cluster. The authors also wish to thank
Wen-mei Hwu, the IMPACT Team, and the anonymous ref-
erees for their input and feedback. John Kelm was partially
supported by a fellowship from ATI/AMD.

8. REFERENCES

[1] J. Balfour and W. J. Dally. Design tradeoffs for tiled
CMP on-chip networks. In ICS’06, 2006.

[2] G. E. Blelloch. Scans as primitive parallel operations.
IEEE Trans. Comput., 38(11), 1989.

[3] D. Burger, J. R. Goodman, and A. Kägi. Memory
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