
Accelerating Sparse Data Orchestration
via Dynamic Reflexive Tiling

Toluwanimi O. Odemuyiwa
1
, Hadi Asghari-Moghaddam

2
, Michael Pellauer

3
,

Kartik Hegde
2
, Po-An Tsai

3
, Neal Crago

3
, Aamer Jaleel

3
,

John D. Owens
1
, Edgar Solomonik

2
, Joel S. Emer

3,4
, Christopher W. Fletcher

2

University of California, Davis
1
; University of Illinois at Urbana-Champaign

2
; NVIDIA

3
; MIT

4

ABSTRACT
Tensor algebra involving multiple sparse operands is severely mem-

ory bound, making it a challenging target for acceleration. Further-

more, irregular sparsity complicates traditional techniques—such

as tiling—for ameliorating memory bottlenecks. Prior sparse tiling

schemes are sparsity unaware: they carve tensors into uniform

coordinate-space shapes, which leads to low-occupancy tiles and

thus lower exploitable reuse. To address these challenges, this paper

proposes dynamic reflexive tiling (DRT), a novel tiling method that

improves data reuse over prior art for sparse tensor kernels, un-

locking significant performance improvement opportunities. DRT’s

key idea is dynamic sparsity-aware tiling. DRT continuously re-

tiles sparse tensors at runtime based on the current sparsity of the

active regions of all input tensors, to maximize accelerator buffer

utilization while retaining the ability to co-iterate through tiles of

distinct tensors.

Through an extensive evaluation over a set of SuiteSparse matri-

ces, we show how DRT can be applied to multiple prior accelerators

with different dataflows (ExTensor, OuterSPACE, MatRaptor), im-

proving their performance (by 3.3×, 5.1× and 1.6×, respectively)
while adding negligible area overhead. We apply DRT to higher-

order tensor kernels to reduce DRAM traffic by 3.9× and 16.9× over

a CPU implementation and prior-art tiling scheme, respectively.

Finally, we show that the technique is portable to software, with an

improvement of 7.29× and 2.94× in memory overhead compared to

untiled sparse-sparse matrix multiplication (SpMSpM).

CCS CONCEPTS
•Computer systems organization→ Special purpose systems;
• Hardware→ Hardware accelerators.

KEYWORDS
Tensor Algebra, Sparse Computation, Hardware Acceleration

ACM Reference Format:
Toluwanimi O. Odemuyiwa, Hadi Asghari-Moghaddam, Michael Pellauer,

Kartik Hegde, Po-An Tsai, Neal Crago, Aamer Jaleel, John D. Owens, Edgar

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9918-0/23/03.

https://doi.org/10.1145/3582016.3582064

Solomonik, Joel S Emer, Christopher W. Fletcher. 2023. Accelerating Sparse

Data Orchestration via Dynamic Reflexive Tiling. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (ASPLOS ’23), March 25–29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 15 pages. https:

//doi.org/10.1145/3582016.3582064

1 INTRODUCTION
Tensor algebra—arithmetic with vectors, matrices, and higher-

order tensors—is a ubiquitous primitive in numerical computa-

tions [3, 6, 38, 41, 47, 54]. In this work, we focus on the acceler-

ation of sparse tensor algebra, in particular, the contraction of

multiple sparse tensors. In the simplest case, this is the multi-

plication of two sparse matrices (SpMSpM), which has myriad

applications in graph algorithms, solvers for linear systems and

more [3, 6, 7, 14, 38, 41, 47, 54]. Beyond SpMSpM, sparse tensor

contraction is an important primitive in many of the core areas

of tensor computations, including computational chemistry meth-

ods [9, 33, 48] and sparse tensor decomposition [5, 23].

Operations on multiple sparse tensors are difficult to accelerate

as they tend to be memory bound. Thus, maximum achievable

performance is a function of arithmetic intensity, that is, the ratio

of FLOPS to the data traffic (bytes transferred) from main memory.

State-of-the-art sparse accelerators improve arithmetic intensity

by first designing around a dataflow to improve data reuse, thus
reducing DRAM traffic [16], and then making data representation

and data orchestration decisions. Figure 1 shows theDRAM traffic of

prior SpMSpM accelerators that explore using three main SpMSpM

dataflows (outer-product [42, 61], row-wise Gustavson’s [49, 60],

and inner-product [30, 44]). Yet, as the figure shows, dataflow alone

is not sufficient to bring DRAM traffic close to the lower bound.

For dense problems, significantly improving reuse (and there-

fore performance) beyond dataflow decisions is often achieved

through tiling. Unfortunately, tiling sparse data for high data reuse

is non-trivial. Consider a state-of-the-art scheme for sparse tiling,

ExTensor [30], that statically tiles the input and output matrices

offline into uniformly sized, coordinate-space regions, where co-

ordinates correspond to the locations in Cartesian space such as

row and column ids. Such a tiling is oblivious to data distribution.

This can lead to lower occupancy tiles (i.e., those with few non-

zeros), which leads to lower reuse per buffer fill and therefore lower

performance.

To address the above challenges, we propose dynamic reflexive
tiling (DRT), a novel tiling algorithm and hardware primitive that

improves tile occupancy (and therefore reuse) in the presence of

irregular sparsity.

https://doi.org/10.1145/3582016.3582064
https://doi.org/10.1145/3582016.3582064
https://doi.org/10.1145/3582016.3582064

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Odemuyiwa, et al.

15/02/2023, 16:11 visualization (36).svg

file:///home/toluwao/Downloads/visualization (36).svg 1/1

0

5

10

15

20

D
ra

m
 T

ra
ffi

c
(G

B
)

OuterSPACE MatRaptor ExTensor ExTensor-OP-DRT
(This Paper)

65 29.6 47.6A Traffic
B Traffic
Z Traffic

Figure 1: DRAM traffic for each input operand (𝐴, 𝐵) and output
(𝑍) in SpMSpM (𝐴 · 𝐵 = 𝑍), aggregated over the matrices used in our
evaluation (Section 6) setting 𝐵 = 𝐴. Each bar indicates actual traffic
and each red square indicates the lower bound on traffic (read each of
𝐴 and 𝐵 once, write 𝑍 once for each matrix). OuterSPACE [42], Mat-
Raptor [49] and ExTensor [30] are representative accelerators that
apply the outer-product, Gustavson’s and inner-product dataflows,
respectively. ExTensor-OP-DRT (this paper) using dynamic reflex-
ive tiling achieves significantly closer to the lower bound for all
operands/outputs. Different accelerators use similar but not identi-
cal compressed representations, and hence have slightly different
traffic lower bounds.

The key idea in DRT is to dynamically tile input and output ten-

sors into nonuniform coordinate-space regions: tiles whose volumes

differ when measured in coordinate space. As shown in Figure 1,

this results in more efficient use of DRAM bandwidth.

Through dynamic nonuniform coordinate-space tiling, DRT

takes into account data sparsity across all participating tensors

to dynamically build tiles online. Tile occupancy, i.e., the number

of non-zeros in the tile, is maximized, subject to the buffer capacity.

Meanwhile, variation in occupancy across spatially distributed tiles

is minimized. To maximize utilization across the entire duration

of kernel execution, DRT not only changes tile shape across dif-

ferent regions of each tensor but also over time for the same region,
based on how the data is later reused. For example, in SpMSpM

(𝐴 · 𝐵 = 𝑍), the ideal tile shape for a given set of rows in matrix 𝐴

changes depending on the active set of columns for matrix 𝐵.
A challenge that arises when tiling into nonuniform size regions

is how to enable co-iteration. That is, when performing operations

such as inner or outer products on tiles, participating tiles must

have corresponding coordinate ranges. For example, inner-product

matrix multiplication requires that the column coordinates in a tile

of matrix 𝐴 match the row coordinates in a tile of matrix 𝐵. This

facilitates operations such as coordinate intersections by ensuring

that the set of coordinates from each tile in the intersection covers

the same coordinate range.

To address the co-iteration problem, DRT co-tiles in the coordi-
nate space. A co-tiling is one where co-iterated dimensions, shared

between tiles mapped to each buffer, correspond to the same co-

ordinate range in the original untiled tensors. Depending on the

dataflow, co-tiling may require coordinating tile shape across many

tiles. For example, if a tile of matrix 𝐴 is broadcast to all PEs, all

tiles of 𝐵 later mapped to the PEs must be co-tiled with respect to

that tile of 𝐴. This is nontrivial, as tile shapes become constrained

as a function of one another and the available buffer space.

We propose an algorithm and hardware architecture to perform

all of the above efficiently, including hiding the latency of dynamic

tile construction. This is challenging, as finding optimal tile shapes

implies performing a search that must be solved online and contin-

uously for each set of tiles distributed to each accelerator buffer,

Matrix X

I

J

point
coordinate

(i , j)

Matrix X
CSR Compressed Representation

segment array

coordinate array

data value array
1 2 0 2 3 1

7 1 6 12 3 10

0 2 2 5 6

10
6 12 3

7 1

position

(a) (b) (c)

 Matrix X
Fibertree Representation

0

0 2 3

1 2 0 2 3 1

row

col

0 1 2 3
0

1

2

3

7 1 6 12 3 10

Figure 2: (a) Tensor terminology using matrices as an example. (b)
Example compression using CSR. (c) Fibertree representation of the
compressed matrix.

and each step in the search involves counting non-zeros from each

untiled operand’s compressed representation, e.g., CSR.

To more quickly find high-occupancy tile shapes that satisfy co-

tiling constraints, DRT dynamically builds nonuniformly shaped

macro tiles from statically-built and uniformly-shaped micro tiles,
subject to co-tiling constraints. By working at micro tile granular-

ity, DRT quickly creates high-occupancy macro tiles. By enabling

buffers to store variable numbers of micro tiles via a single macro

tile, DRT decouples buffer capacity from worst-case dense tile oc-

cupancy, enabling smaller buffers that better exploit data reuse.

To summarize, the paper makes the following contributions.

• We propose a novel sparsity-aware tiling algorithm, dynamic
reflexive tiling (DRT), that dynamically co-tiles input and out-

put tensors to maximize buffer utilization. Moreover, we

propose a hardware primitive, the tile extractor, which im-

plements DRT using small hardware area.

• We integrate DRT into prior accelerators ExTensor, Out-

erSPACE and MatRaptor (representatives of major popular

SpMSpM dataflows). Through an extensive evaluation over

a set of SuiteSparse and SNAP matrices, we show how DRT

enables significant performance improvement for these ac-

celerators (by 3.3×, 5.1× and 1.6×, respectively). Using Accel-
ergy [57], we model the area/energy overheads of DRT and

demonstrate net energy improvement (over a design w/o

DRT) with negligible area cost.

• We show the potential of DRT to improve computation on

higher-order tensors, by demonstrating how DRT applied to

ExTensor can reduce that design’s memory traffic by 16.6×
when running the Gram kernel.

• We evaluate the potential benefits of a software DRT im-

plementation over an untiled (and statically tiled) software

implementation, showing a 7.29× and 2.94× memory traffic

improvement, respectively.

2 BACKGROUND AND TERMINOLOGY
We now provide background (summarized in Table 1).

2.1 Tensors, Tensor Kernels and Einsums
Tensors: Tensors are multi-dimensional arrays of arbitrary dimen-

sionality 𝑁 . We use the notation 𝑁 -tensor for brevity. For example,

0-tensors are scalars, 1-tensors are vectors, 2-tensors are matrices.

Figure 2 (a) shows an example matrix 𝑋 with dimensions 𝐼 (rows)

and 𝐽 (columns). Each location in the matrix, identified by its row

Dynamic Reflexive Tiling ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

and column numbers, is referred to as a point. An element in 𝑋 at

point (𝑖, 𝑗) is written as 𝑋𝑖 𝑗 . The row and column indices making

up the point are called coordinates. We refer to the list and sizes of

these dimensions—where size refers to the maximum number of

coordinates in that dimension—as the tensor’s shape. The previous
example’s shape is 𝐼 × 𝐽 . Each point stores a scalar data value. For
convenience, we denote dimension names and sizes with upper-

case letters and index variables with the corresponding lowercase

letters.

Sparse tensor kernels:We focus on the kernel of tensor con-

traction, which generalizes products of vectors andmatrices. Tensor

contractions are commonly described by ‘Einsum’ [21] (Einstein

summation) expressions. The Einsum for matrix multiply is

𝑍𝑖 𝑗 = 𝐴𝑖𝑘𝐵𝑘 𝑗 . (1)

This defines an iteration space of 𝐼 × 𝐽 × 𝐾 . At each point in this

space, the corresponding values of𝐴 and 𝐵 are multiplied and stored

in the corresponding (𝑖, 𝑗) point of the output. The contracted rank,
𝑘 , implies a reduction over 𝑘 for each repeated (𝑖, 𝑗) output point.
This can also be expressed as a sequence of dot products (made up

of multiply-accumulates or MACCs) between vectors in the 𝐼 × 𝐾
matrix𝐴 and the 𝐾 × 𝐽 matrix 𝐵, forming the 𝐼 × 𝐽 matrix 𝑍 . Unless

otherwise stated, we assume tensors start at the base point (0, . . . ,
0). Coordinate indices 𝑖 , 𝑗 , and 𝑘 range from 0 to the size given by

their dimension, e.g., 0 ≤ 𝑖 < 𝐼 .
In Equation 1, dimension 𝐾 is called contracted [22] because

a reduction occurs across it as indicated by the summation over

𝑘 . We focus on the case where all tensors on the right-hand side

of the Einsum are sparse. Then, implementations of sparse tensor

contractions may avoid ineffectual computations (since 0 · 𝑥 =

0) by performing intersections between coordinates of non-zero

values [30]. Dimensions 𝐼 and 𝐽 are called uncontracted.
Dataflow: Given an Einsum, a kernel must now decide the order

in which to traverse the iteration space. This order is typically

expressed as loop nests. The loop order, which is an aspect of the

dataflow [16], impacts datamovement. For example, matrixmultiply

can be expressed as three loops, where the loop order is 𝐽 → 𝐼 → 𝐾

(iterate over 𝐽 in the outermost loop, 𝐼 in the second-to-outer loop,

etc.). In this example, data in 𝑍 is stationary [16], since 𝑖 and 𝑗 do

not change in the innermost loop. Due to operation commutativity,

these loops can be reordered, changing which operand is stationary.

In general, for a given loop nest, we say a tensor is less stationary

than another if it is indexed by a faster-changing index.

2.2 Compressed Representations
To reduce memory footprint, sparse tensors are stored in com-

pressed representations. At a high level, these use metadata to

reduce the cost of storing data values equal to zero. Because ze-

ros are not stored, each non-zero’s coordinates do not correspond

to where the data value is physically stored, i.e., its position, in
memory. The tensor’s footprint is the memory storage needed for

a representation, that is, the bytes of metadata and data for that

format.

We assume tensors are stored in the T-[uc]
+
family of representa-

tions [30, 34]. In T-[uc]
+
, a sequence based on the regular expression

[UC]+ indicates whether each tensor dimension is Uncompressed

or Compressed. For example, a matrix can have T-UU, T-UC, T-CU,

Table 1: Terminology, which can be applied to tensors or tiles.

Name Description

Data value Float/double data values

Metadata Non-data values required for the compressed representa-

tion (e.g., segment and coordinate array)

Coordinate A logical location within a dimension

Point Tuple of coordinates identifying a data value

Position Memory location for a metadata or data value

Shape List and sizes of a tensor’s dimensions

Footprint Tensor bytes for metadata + data

Occupancy Tensor number of non-zero elements

or T-CC combinations [30, 34], where T-UU is a fully uncompressed

representation. A compressed dimension conceptually stores point-

ers into the next dimension using coordinate-payload lists. In this

classification, the popular CSR format (shown in Figure 2 (b)) is a

T-UC representation. To hide details of the representation, we will

explain ideas using the format-agnostic fibertree representation [53],

which represents the tensor as a tree of coordinate-payload lists

as shown in Figure 2 (c). In this form, each list of coordinates, e.g.,

coordinates 1, 2 in the first list of the second level, is called a fiber.

2.3 Tiling Compressed Representations
Sparse tensors can be tiled to improve reuse and arithmetic inten-

sity by adding dimensions to the T-[uc]
+
representation [30]. To

partition a matrix represented in CSR into two-dimensional tiles,

we add two dimensions to the representation, giving us T-??UC,

where ‘??’ are two new outer dimensions that can be either U or C.

Thus, each tile is represented in, e.g., CSR, and we traverse outer

dimensions to index into each tile. Supporting multiple levels of

tiles entails adding yet more dimensions.

Each tile has a base point. By convention, we refer to base points

using parent tensor-relative coordinates. If the matrix in Figure 2 is

tiled into 2 × 2 coordinate-space tiles, the tile base points are (0, 0),
(2, 0), (0, 2) and (2, 2).

Prior work [30, 34, 60] performs static, coordinate-based, uniform
tiling for simplicity. Static means the tiles are built for each tensor

offline. Coordinate-based means tile size is specified in the coordi-

nate (not position) domain. Uniform means for each tensor, each

tile within that tensor has the same shape, i.e., same size measured

in coordinate space.

More generally, we classify tiling schemes in a taxonomy given

by Static/Dynamic-Uniform/Nonuniform-Coordinate/Position
where dynamic means chosen online and nonuniform means

different tiles can have different footprints (if in position space) and

shapes (if in coordinate space). We use this taxonomy as a short-

hand. For example, an S-U-C tiling is Static-Uniform-Coordinate

space and D-N-C is dynamic-nonuniform-coordinate space.

3 DYNAMIC REFLEXIVE TILING
We now describe dynamic reflexive tiling (DRT), an online heuristic

to build D-N-C tiles. We define DRT for the general problem of

sparse tensor kernels, expressed as an Einsum of sparse tensors.

When operands are tiled, the calculation operates on a piece of

the overall Einsum being computed, splitting the work into tasks

that correspond to tile-wise calculations. Specifically, we define

an Einsum task as a contraction of a set of tensors for a range of

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Odemuyiwa, et al.

coordinates. For example, using Equation 1, a task could be

𝑍𝑖 𝑗 = 𝐴𝑖𝑘𝐵𝑘 𝑗 𝑖 ∈ [𝐼0, 𝐼1), 𝑗 ∈ [𝐽0, 𝐽1), 𝑘 ∈ [𝐾0, 𝐾1), (2)

where 𝐾0 < 𝐾1 ≤ 𝐾 and index 𝑘 iterates from 𝐾0 to 𝐾1 (same

conventions for 𝑖, 𝐼 and 𝑗, 𝐽). In this task, a tile 𝐴 of shape 𝐼1 − 𝐼0
by 𝐾1 − 𝐾0 is multiplied by a tile of 𝐵 of shape 𝐾1 − 𝐾0 by 𝐽1 − 𝐽0,
where the parent tensor-relative coordinates along the𝐾 dimension

match in both tiles. Completing the entire matrix multiply involves

evaluating a set of tasks, each of which operates over a set of tiles

that partition the compute space given by the original kernel (e.g.,

Equation 1).

3.1 Trade-offs in Changing Tile Shape
DRT’s goal is to determine the shape of each tile—i.e., 𝐼0, 𝐼1, 𝐾0, 𝐾1,

etc.—in each task so as to maximize buffer occupancy, which by

extension reduces variation in buffer occupancy. This facilitates

better data reuse. Depending on whether a dimension is contracted

or uncontracted, changes to tile size along that dimension have

different implications on tile footprint and data reuse. For simplicity,

first consider the case when all tensors are dense. Increasing a

dimension 𝐺 of a tile by a factor 𝛼 increases the footprint of tiles

participating in the Einsum task with a dimension indexed by 𝑔

(including the output) by 𝛼 . The tiles in the Einsum task of operands

in which 𝑔 does not appear are unmodified, but the amount of

computation in the Einsum task is increased by 𝛼 , hence the reuse

achieved for the elements of these tiles increases by 𝛼 .

The presence of sparsity adds additional complexity to these

tradeoffs. First, changing a dimension’s size for a tile in coordi-

nate space has an irregular impact on tile footprint. In some cases,

increasing a dimension will not change tile footprint because all

data values in the new tile region are zero. Second, when the tiles

are sparse, only effectual computations contribute to the output.

Thus, the output tile footprint is not known until after intersections

are performed, and is difficult to predict/provision for before the

intersections are performed. Nevertheless, even in the worst case,

reuse increases monotonically with tile volume. In the best case,

we expect to achieve the same improvements in reuse from tiling

as in dense.

3.2 Reflexive Tiling Algorithm

Algorithm 1 Dynamic reflexive tiling (DRT) pseudo-code.

Inputs: tensors, base_points, loop_order
Outputs: constraints, tile_sizes
function DRT(tensors, base_points, loop_order)

// Starting tile sizes are chosen statically at design time
5: tile_sizes = [initialTileSize(d) for d in allDims()]

// Growing a dimension becomes a constraint on later tensors
constraints = [None for d in allDims()]

// Grow tensors into unused buffer space heuristically
// Favor tensors whose tiles are resident longer

10: for tensor in sortByStationarity(tensors, loop_order) do
// Load the next tile using existing constraints
try: tensor.loadNextTile(tile_sizes, constraints, base_points)
catch TooLarge: return fallbackPath(constraints)

// growDims() will update tile_sizes
15: growDims(tensor, constraints, tile_sizes)

Algorithm 2 Generic growDims() Function.

Inputs: tensor, constraints, tile_sizes
Outputs: constraints, tile_sizes
// Grow until all dimensions of tensor are constrained
function growDims(tensor, constraints, tile_sizes)

5: // selectDimToGrow: select which dimension to grow
// and return None if all dimensions are constrained
while d = selectDimToGrow(tensor.Dims(), constraints) is not None do

// Grow if we haven’t constrained this dimension
if constraints[d] is None then

10: // Try to grow this dimension by 𝑛 and update the tile size
try

// 𝑛 → the amount to grow by, e.g.: 1
tile_sizes[d] = tensor.tryToGrow(d, n)

catch TooLarge:

15: constraints[d] = tile_sizes[d]

return fallbackPath(constraints)

We now describe how DRT uses the above tradeoffs to decide

how to tile. Importantly, choosing a nonuniform tiling is (inher-

ently) an online task, since nonuniform tile shapes are a function

of all participating tensors. At the same time, the space of possible

tilings is large. Prior work notes that finding an optimal tiling is

NP-hard [2, 52, 58] and requires global visibility of the data. Thus,

we face a tradeoff between spending time to find a higher-quality

tiling vs. benefiting from that tiling. We propose a framework that

enables greedy algorithms to choose tile shapes. We found that

these strategies significantly reduce DRAM traffic while allowing

us to overlap the process of building and computing on tiles (see

Figure 1).

Algorithms 1 and 2 show pseudo-code for our scheme. For clarity,

we describe the scheme focused on a single level of the buffer hier-

archy, called the fast memory, and show the operations needed

to form a single Einsum task (which specifies tile origins, e.g.,

𝐼0, 𝐽0, 𝐾0 in Equation 2). Given an Einsum task that contracts tensors

𝑈 ,𝑉 ,𝑊 , . . ., where tiles of𝑈 are changed least frequently,𝑉 second-

least, etc., we begin with a static provisioning of the fast memory

and an initial tile shape for each tensor (Lines 4–7 of Algorithm 1).

In the main body of the algorithm (Lines 10–15), DRT proceeds

tensor by tensor to determine tile shape along each dimension so

as to maximize the number of non-zeros in each tile, prioritizing

tiles that will be kept local in fast memory for longer, i.e., are more

stationary (Line 10).

The algorithm then tries to grow the dimensions of each tensor

(Alg. 1, Line 15 and Algorithm 2). Specifically, growDims first selects
which dimension to grow, then attempts to grow it by a certain

amount. Our implementation grows by one (𝑛 = 1 in Alg. 2, Line 13).

There are a few approaches to selecting the order in which to grow

dimensions (selectDimToGrow in Alg. 2, Line 7). We implement

an approach that first tries to grow contracted dimensions in 𝑈

in a single pass, then grows uncontracted dimensions in 𝑈 , then

continues to contracted and then uncontracted dimensions in 𝑉 ,

and so on, until the sum of tile footprints exceed buffer capacity.

This approach enables relatively simple traversal of the compressed

representation. It prioritizes maximizing output locality and mini-

mizing output traffic, which tend to be the bottleneck in dataflows

that require merging of partial output products [42]. Unless other-

wise stated, this is the default DRT implementation for the rest of

this paper.

Dynamic Reflexive Tiling ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Another approach, evaluated in Section 6.3 and 6.6, repeatedly

alternates across the dimensions of a tensor, in order to maintain

square tiles, until the buffer capacity is reached. This approach

avoids shapes that are longer along one dimension and attempts to

balance input/output locality. Other strategies are possible: beyond

the sequence of dimensions over which to grow (Alg. 2, Line 7), one

can change the starting tile shape (Alg. 1, Line 5).

All subdivisions are made in the coordinate space, and are akin to

changing shape from Section 3.1. Specifically, each tile produced by

DRT corresponds to a subtensor given by restricting the coordinate

range of the original tensor along each dimension. Subsequent calls

to DRT produce tiles for subsequent tasks. Tile base points from

which to start building tiles change depending on the dataflow. For

example, in an inner-product (output stationary) dataflow applied

to Equation 2, the 𝐾1 determined by the first call to DRT becomes

the starting index for the 𝐾 dimension for the second call. In this

way, successive calls to DRT tile the Einsum by considering the

set of non-zero elements of the operand tensors involved in the

computation of each Einsum task and selecting each tile’s shape to

be as large a hyper-rectangle as possible while still fitting into fast

memory.

Since changing a dimension influences tile shapes for other ten-

sors sharing that dimension (Section 3.1), it may not be possible to

subdivide remaining dimensions while ensuring that all tiles fit into

their allotted portions of the fast memory. This is represented by

the try/catch blocks in Algorithm 1 and 2. In such cases, a fallback

path is invoked. The fallback on Line 16 of Algorithm 2 is imple-

mented as a continue (i.e., once we cannot grow further along one

dimension, we try to grow along the next dimension). The fallback

on Line 13 of Algorithm 1 is implemented by subdividing the most

recent dimension of the tensor and recursively building new tiles on

the subdivided tensor. This path is only invoked when particularly

dense tiles from multiple tensors are encountered simultaneously.

3.2.1 Coarsening and Hierarchy. To reduce the effort it takes DRT

to find a high-occupancy tiling, but potentially at the cost of finding

the optimal tiling, the above scheme can be coarsened using an

S-U-C tiling scheme, in which case scalar elements are replaced by

tiles (called micro tiles) making the work a function of the number

of micro tiles rather than the number of scalar elements. When

coarsened to micro tiles, all sub-divisions occur at micro tile granu-

larity. By physically tiling the tensor data into uniform micro tiles,

the macro tiles produced by DRT are then treated as logical tiles.

Macro tiles are then loaded into fast memory by collecting a set

of micro tiles. This approach enables DRT to reuse micro tiles as

constituents of distinct macro tiles that achieve maximal buffer

occupancy for different Einsum tasks.

Finally, DRT can be applied hierarchically to achieve locality/load

balance at different levels in the memory hierarchy.

3.3 Example for matrix multiplication
Figure 3a shows an example SpMSpM instance and how both DRT

and the prior-art S-U-C tiling scheme [30] decompose it into tasks.

This example assumes a 𝐽 → 𝐾 → 𝐼 dataflow—i.e., matrix 𝐵 is

stationary. We assume a buffer (fast memory) that can fit up to 2

data values for each of matrix 𝐴 and 𝐵. Thus, the only tile shapes

available to the S-U-C baseline are 2 × 1 and 1 × 2—as any larger

shape would not fit the data in the worst case.

Algorithm 1 builds tiles for the first task in steps a – c . Each call

to Algorithm 1 determines the next task’s tile shapes for 𝐵 followed

by 𝐴. We assume the initial tile size has shape 2 × 1 for 𝐴 and 1 × 2

for 𝐵 (Alg. 1, Line 5). To form task (1), whose tile base points are

𝐼 = 𝐽 = 𝐾 = 0 (Alg. 1, Line 4), DRT (a) grows the 𝐵 tile along

the 𝐾 (contracted) dimension, then (b) along the 𝐽 (uncontracted)

dimension when it cannot grow further along 𝐾 . DRT then builds

the tile for 𝐴: due to constraint[k], it sets the 𝐾 dimension to

match (co-tile) that of 𝐵 (a), then c grows along the 𝐼 dimension

until the buffer partition for 𝐴 is full. We form subsequent tasks

(2) and (3) through subsequent calls to Algorithm 1, specifying the

tile base points in the order given by the dataflow (loop_order in

Algorithm 1, Line 1).

Figures 3b and 3c build on this illustration to show the lower-

level actions of DRT on example compressed formats. We assume

the shaded regions in 3a are scalars and the dataflow is 𝐽 → 𝐾 → 𝐼 .

For concordant traversal (i.e., traversal in the same order as the

layout of the data format) [53], 𝐴 is in compressed sparse column

(CSC) format [17] (𝐾-major) and 𝐵 is in CSC format (𝐽 -major).

Figure 3b shows the initial values of various variables from Alg. 1

and Figure 3c shows the way they change over time. Section 4.3

further discusses how the related hardware interacts with these

formats.

Comparison to S-U-C: Where does the benefit come from?
The key difference between DRT and the S-U-C tiling scheme is

that DRT can increase the coordinate range of each tile beyond the

buffer capacity in the presence of irregular sparsity. For example,

the first tile of 𝐵 for DRT spans a 2 × 4 coordinate range because

there are only two non-zero values in that range. The baseline (S-

U-C) is limited to smaller tile shapes. Larger coordinate-space tiles

can translate into memory traffic reduction. In this example, DRT

completes SpMSpM after reading matrix 𝐴 once. Conversely, the

baseline must read 𝐴 twice (see red text in the figure for Task (4)).

Since SpMSpM is typically memory-bandwidth bound, this traffic

reduction translates into increased performance.

4 THE TILE EXTRACTOR
Accelerators have been particularly efficient in the sparse domain;

thus, we focus on a hardware unit, called the tile extractor, that
implements DRT while accounting for pipelining effects and buffer

management. We further explain how to integrate the tile extractor

into an accelerator buffer hierarchy. Section 6.2 looks at the impact

of these changes to three representative accelerators.

Sparse Data-Orchestration Partitions (S-DOPs). Figure 4 depicts an
accelerator composed of multiple levels of on-chip buffers, routing

fabric between the buffers, and compute resources at the lowest-

level buffer [15, 16, 30, 42–44, 49, 60]. Buffers and compute at the

lowest level are called processing elements (PEs). We note a com-

mon accelerator design pattern where each memory level contains

surrounding logic for reading, distributing, and computing on com-

pressed formats. We refer to these buffers and logic at the non-PE

levels as sparse data-orchestration partitions (S-DOP), which store

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Odemuyiwa, et al.

0
1
2
3

0 1 2 3
0
1
2
3

Matrix A Matrix B
0 1 2 3

DRT
(D-N-C
tiling)

Prior
work

(S-U-C
tiling)

K J

KI

Task 1

aa

c d

Task 2

e

Task 3

e

Task 4

Done!

Starting with Task 4, we will
begin to re-read matrix A

b

(a) Top: Dynamic reflexive tiling example for SpMSpM, showing tile shapes for tasks (1)–(4). Arrows a – c show the order of tile growth in task
(1), while d and e show how tile shape changes across subsequent tasks. The red, shaded squares show the initial tile shape (Alg. 1, Line 5) of
2×1/1×2 in in task (1). Bottom: An S-U-C tiling baseline (e.g., ExTensor [30]). The fast memory (buffer) is statically partitioned between𝐴 and 𝐵,
and each partition can store ≤ 2 non-zero values. Shaded/un-shaded squares are non-zeros/zeros. Tasks involving empty tiles are skipped.

0 3 3 3 3

0 2 3

0.5 0.2 0.7

K segment array
I coordinate array

data value array

0 2 3 3 4

0 2 2 0

0.3 0.1 0.8 1.1

J segment array

K coordinate array
data value array

Matrix A - CSC Format Matrix B - CSC Format

Initial Tile Size (shape: 2x1 & 1x2)

(B) J Metadata

(B) K Metadata

Relevant K/J coord:
(A) K Metadata

(A) I Metadata

Initial Register Status

base_points(i,j,k) (0, 0, 0)
tile_sizes (i, j, k) (2, 2, 1)
constraints(i,j,k) (None, None, None)
A tile occupancy 1
B tile occupancy 1

Compressed Format Example

0 1 2 3

0 2 3

0 2 3 3 4

0 3 3 3 3

0 2 2 0

(b) Left: The compressed representation of𝐴 and 𝐵 in DRAM assuming representations that are easily traversed by the 𝐽 → 𝐾 → 𝐼 dataflow. Data
values are arbitrary. Middle: For initial tile shapes of 2×1 and 1×2, the highlighted regions match the red tiles in Figure 3a. Right: Initial status of
counters for DRT.

0 2 3 3 4

0 2 2 0

Task 1(a)

base_points(i,j,k) (0,0,0) (3,0,0)

tile_sizes(i,j,k) (2,2,3) (2,2,2) (2,4,2) (3,4,2) (1,4,2)

Constraints(i,j,k) (N,N,N) (N,N,2) (N,4,2) (3,4,2) (N,4,2) (1,4,2)

A tile occupancy 1 2 1
B tile occupancy 3 1 2

(A) K Metadata

(A) I Metadata

(B) J Metadata

(B) K Metadata

a

c

Task 2(d)

d
constraint

 (on K)

a b c d
Register Status over TimeTask 1(b-c)

Time

0 2 3 0 2 3

b

0 2 2 0

0 2 3 3 4

0 3 3 3 30 3 3 3 3

0 2 3 3 4

0 2 2 0

0 3 3 3 3

0 2 3

(c) Left: Metadata memory accesses for tasks 1 and 2. Highlighted boxes indicate read accesses. The red X indicates an occupancy check failed as the
current tile exceeds buffer capacity. Right: Changing counter values as DRT grows each tile. 𝑁 stands for “None” (Alg. 1, Line 7). The red X denotes
a canceled operation due to buffer overflow (Alg. 2, Lines 16). Values that changed between one step and the next are underlined.

Figure 3: DRT example with CSR/CSC formats. See sections 3.3 and 4.3 for details.

and distribute tensor metadata and data for distribution to next-

level buffers. For example, if we map ExTensor to this accelerator

hierarchy, its S-DOP-like logic forms and distributes data and meta-

data as uniform coordinate-space (S-U-C) tiles. S-DOP logic may

be implemented using address generators [15, 16, 29, 31, 43] or

finite-state machines capable of traversing compressed representa-

tions [30]. We design the tile extractor as a hardware unit within the

S-DOP (Figure 4). Each tile extractor implements all of Algorithm 1

and multiple S-DOP levels apply DRT hierarchically. That is, follow-

ing the accelerator template, the tile extractor in the DRAM S-DOP

dynamically breaks tensors (kernels) into nonuniform coordinate-

space D-N-C tiles (tasks), the tile extractor in the Global Buffer

S-DOP breaks these D-N-C tiles into D-N-C sub-tiles (sub-tasks),

etc.

The rest of the section is discussed with respect to the first level

of hierarchy (when tensors and kernels are broken into tiles and

tasks). Tile extractors interact with their local S-DOP buffer, which

stores tensor compressed representations, to determine the shape

A1

Buffer (Par��oned)

AggregateMD Build

Tile Extractor

Dataflow
Engine

Constraints

Shape

B Z

M
ic

ro
til

es

Iterate() Ite
ra

te
()

2

2a2b

M
DAddr.

Requests

S-DOP

S-DOP

DRAM

Global buffer

PE PE

Ac
ce

le
ra

to
r

Tile Extractor

Distributor

To Distributor

M
et

ad
at

a
(M

D
)

Figure 4: (Left) Accelerator template composed of PEs/S-DOPs. (Mid-
dle) Tile Extractor units.

of each tile involved in the next task. This process, discussed in

Dynamic Reflexive Tiling ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

detail in Section 4.2, is non-trivial, as calculating how tile foot-

print changes as a function of tile shape requires a variable and

possibly substantial number of reads into the tile’s compressed

representation.

4.1 Micro Tile-Granular Tile Extraction
Supporting coarsening (Section 3.2.1) in hardware is relatively

straightforward. Pre-processing input tensors into micro tiles is

equivalent to the pre-processing needed by prior S-U-C tiling

schemes (Section 2.3). To support DRT (Section 4.2), we augment

T-[uc]
+
metadata to include micro tile footprints, stored alongside

the coordinates for each micro tile (see Figure 5). This ensures that

as the tile extractor iterates through the compressed representation,

it knows the underlying micro tile footprint without introspection

of the micro tile’s metadata.

Although micro tiles are S-U-C, accelerator performance is less

sensitive to their exact shape than in a traditional S-U-C tiling

scheme (e.g., ExTensor [30]). For example, buffers in ExTensor are

explicitly managed [43], similar to scratchpads. Thus, the buffer

capacity must be sufficiently large to fit the worst-case tile, i.e.,

when a region of the tensor is dense. This creates an undesirable

trade off: smaller/larger buffers are more/less efficient to access, but

imply less/more maximum reuse (which is a function of S-U-C tile

shape).

Conversely, D-N-C decouples buffer size from the tile shape.

With DRT, a single macro tile contains an arbitrary number of

micro tiles, subject to capacity and co-tiling constraints. Micro tile

shape can be small, and tuned based on what DRT needs to quickly

determine macro tile shape.

4.2 Implementation
There are three steps in the tile extractor’s implementation:

4.2.1 Aggregate. The Aggregate module determines which micro

tiles should form eachmacro tile. Following Section 3.2, we statically

partition the S-DOP buffer by each operand and output tensor (1 ,

2 in Figure 4). The goal of Aggregate (2a , Figure 4) is to choose

macro tile shapes such that each macro tile’s footprint maximizes

buffer partition occupancy without exceeding capacity, and while

respecting co-tiling constraints.

As the tile extractor tries to expand along contracted and un-

contracted dimensions (Algorithm 2, Figure 4), Aggregate reads

the tensor’s compressed representation and uses an accumulator to

track the current macro tile footprint. Setting each dimension might

require reading the compressed representation for multiple micro

tiles. In that case, Aggregate reads the compressed representation

in raster order. To improve throughput, our implementation reads

𝑃-word wide vectors (our evaluation uses 𝑃 = 32) of the compressed

representation and provisions a 𝑃-to-1 parallel adder to determine

the occupancy of 𝑃 micro tiles each cycle.

4.2.2 Metadata build. Since tiling is hierarchical, sub-tiles formed

via DRT must have proper T-[uc]
+
metadata to be interpreted cor-

rectly by the next level of S-DOPs. Metadata build takes the micro

tile coordinates produced during the aggregate step and uses them

to construct a macro tile in a T-[uc]
+
representation. In our imple-

mentation, we implement T-[uc]
+
representations using coordinate

and segment array data structures similar to CSR/CSC and CSF

(Section 2, see Figure 5). The metadata build unit builds these data

structures from the bottom up. It starts with the coordinate and

segment arrays that directly refer to micro tiles, then builds up to

the root of the sub-tensor formed by the macro tile (2b in Figure 4).

4.2.3 Pipelining. After i) Aggregate and ii) Metadata build com-

plete, the new macro tile (its metadata and micro tile data) is iii)

Distributed to the next-level S-DOP.

Pipelining occurs at two levels. First, we overlap Distribution for

tile 𝑖 and Aggregate+Metadata build for tile 𝑖 +1 by adding a second
port to S-DOP local buffers. Distribution typically dominates as it

needs to read tile metadata and data, as opposed to just metadata.

Thus, this strategy can usually hide Aggregate and Metadata build

costs. Second, task formation in S-DOP level 𝑗 is overlapped with

task processing time in level 𝑗 − 1 (where level 0 = the PEs). Thus,

as long as the time to evaluate the task (e.g., MACC, intersection

operations) rate matches tile build, the latter cost is likewise hidden.

4.3 Compressed Format Example
In task (1) of Figure 3c, Aggregate first reads the 𝐽 segment array of

𝐵 for 𝐽 = [0, 2), then sequentially traverses the 𝐾 coordinate array

to see the number of non-zeros that fall under tile_sizes[k] ≤
2. Since there are 2 new non-zeros with 𝐾 coordinates less than or

equal to 2 (see a column of the register status in Figure 3c), the

accumulator for 𝐵 (B tile occupancy in Figure 3c) flags a buffer

overflow and the Aggregator reverses the operation.

Figure 5 expands the memory layout to the accelerator hier-

archy. Assume a 𝐽 → 𝐾 → 𝐼 dataflow from DRAM to the LLB

(CSC/CSC for𝐴/𝐵), a 𝐾 → 𝐼 → 𝐽 dataflow from the LLB to the PEs

(CSC/CSR for 𝐴/𝐵), and an 𝐼 → 𝐽 → 𝐾 dataflow within the PEs

(CSR/CSC for 𝐴/𝐵). The DRAM S-DOP shows the memory layout

for pre-processed tiled-CSC (T-[uc]
+
) matrices (Section 4.1). Shaded

regions from Figure 3a now represent micro tiles of shape 3 × 3

(arbitrarily chosen) instead of scalars. Metadata now includes micro

tile footprints (micro tile sizes). Additionally, the data array of

scalars is replaced with an array of pointers to micro tiles. Micro

tiles are stored as standard 3 × 3 CSR/CSC matrices elsewhere in

memory (e.g., @addr0 in Figure 5).

In the DRAM S-DOP, Aggregate processes metadata in the same

manner as Figure 3c. However, rather than accumulating by one as

the tile grows, Aggregate increments by the the augmented micro

tile footprint. Steps a – b under the DRAM Aggregate unit corre-

spond to the same memory access patterns as task (1) in Figure 3c.

For this compressed format, access within a step is sequential for

each array. While Aggregate is determining B’s tile shape (B1 macro

tile), the Metadata (MD) build unit can begin creating the segment

and coordinate arrays for the corresponding macro tile (MD build,

b – c). It recomputes macro tile metadata (I, J, K coordinates) to

start at base points of 0. In parallel, the Distributor streams the rele-

vant micro tile pointers to the LLB S-DOP. It also sends the in-flight

segment, coordinate, and footprint information computed by MD

build. At the LLB S-DOP level, Aggregate can begin determining

tile shapes once it starts receiving the initial metadata information

for 𝐵1. The Distributor at this level schedules pairs of micro tiles to

PEs for compute (Distribute, e – g).

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Odemuyiwa, et al.

Create B1 Macro tile MD Create A2 Macro tile MDCreate A1 Macro tile MD

LLB Capacity: 350B
A/B static partitioning: 175B/150B

PE Buffer Capacity: 160B

A/B static partitioning:80B/80B

S-DOP to PE Task List:
1: (@addr0, @addr3), 2: (@addr0, @addr6)
3: (@addr1, @addr3), 4:(@addr1, @addr6)

DRAM-LLB
Aggregate

0 3 3 3 3

0 2 3

@addr0 @addr1 @addr2

0 2 3 3 4

0 2 2 0

@addr3 @addr4 @addr5 @addr6

76 52 40 40 52 76 64

a bc

MD Build
b

0 2 2

0 2

@addr0 @addr1

76 52

0 2 2

0 3

40 64

@addr3 @addr6

Distribute
@addr3 @addr6

b c
B1 Metadata
c

d

d e

LLB-PE
Aggregate

d

A1 metadata
e

@addr0 @addr1
d e

c

d

ef

Distribute @addr3 @addr0 @addr6 ...
e f g

0 3 3 3 3

0 2 3

@addr0 @addr1 @addr2

0 2 3 3 4

0 2 2 0

@addr3 @addr4 @addr5 @addr6

76 52 40

40 52 76 64

A Tensor
K Segment Array

I Coordinate Array

Micro tile sizes

Micro tile pointers

B Tensor
J Segment Array

K Coordinate Array

Micro tile sizes

Micro tile pointers

@addr0
0 3 4 5

0 1 2 1 2

0.5 0.3 0.2 1.2 2.5

I Segment Array
K Coordinate Array

Data Array

DRAM S-DOP

...

Global Buffer (LLB) S-DOP

A1 Macro tile
K Segment Array

I Coordinate Array

Micro tile sizes

Micro tile pointers

B1 Macro tile
K Segment Array

J Coordinate Array

Micro tile sizes

Micro tile pointers

0 2 2

0 2

@addr0 @addr1

0 2 2

0 3

76 52

40 64

@addr3 @addr6

PE Buffer

0 3 4 5

0 1 2 1 2

0.5 0.3 0.2 1.2 2.5

I Segment Array
K Coordinate Array

Data Array

0 0 1 2

1 2
3.2 1.3

J Segment Array
K Coordinate Array

Data Array

A Micro tile

B Micro tile

Figure 5: Left: Example memory layout of two tensors at each level of the accelerator hierarchy. At the DRAM, assume 𝐴 and 𝐵 are the same
as Figure 3a, but the shaded gray regions are now 3 × 3micro tiles (shape arbitrarily chosen) instead of scalars. We explicitly add micro tile
footprint (micro tile sizes array) to the representation. @addrX refers to the memory address location of a micro tile. Highlighted blue regions
indicate the involved tiles for the first task at each S-DOP level. Right: Hardware actions and memory accesses at each time step, where we
label time steps, in alphabetical order, as (a)–(g). Gold and green regions map to memory accesses into a tensor/tile for the labelled time step.

5 METHODOLOGY
To evaluate DRT: (1) We first integrate DRT into the state-of-the-art

S-U-C-based ExTensor [30] for a subset of linear algebra, graph

analytics, and tensor kernels. (2) We evaluate DRT’s potential in im-

proving the performance of other accelerators that are built around
other dataflows and do not natively tile, by integrating the tile ex-

tractor into those accelerators. (3) We implement a software variant

of DRT and S-U-C and compare their memory overheads to an

untiled SpMSpM implementation.

5.1 Workloads, metrics and datasets
5.1.1 Arithmetic intensity and DRAM-bound performance: We use

the term DRAM-bound performance to mean the highest possible

performance or throughput given the current arithmetic intensity

(i.e., ideal use of on-chip compute).
1
This statistic is shown as the

red dots in Figures 6, 7, 8, 10. We calculate arithmetic intensity as

the number of effectual MACCs divided by the DRAM traffic of

a particular workload on that accelerator. A given workload has

the same number of effectual MACCs across all accelerators. Thus,

red dots in the following figures also indicate how much DRAM

traffic is reduced—and how much data reuse improves—over their

corresponding baselines.

5.1.2 Kernels: Let 𝑆 be a square and sparse matrix, 𝐹 a tall-skinny

sparse matrix, and 𝜒 a 3-D tensor. Given these inputs, we evaluate

these kernels:

• Linear Algebra—SpMSpM: We evaluate SpMSpM for a matrix

multiplied by its transpose for multiple input shapes: a square

matrix (𝑆2), a tall-skinny matrix (𝐹 · 𝐹𝑇), and a short-long matrix

1
Recall, SpMSpM is typically memory bound. Thus, peak performance is a function of

arithmetic intensity.

(𝐹𝑇 · 𝐹). The square of a matrix (𝑆2) is used in Markov clustering [7,

41, 54] and in evaluating SpMSpM software implementations and

accelerators [42, 61]. Kernels with non-square matrices (𝐹𝑇 · 𝐹 ,
𝐹 · 𝐹𝑇) are found in applications such as the Jaccard similarity

index [5, 11, 23, 27].

• Graph analytics—Multi-source BFS: We further evaluate multi-

source parallel breadth first search (MS-BFS) and betweenness cen-

trality which involve SpMSpM between a square matrix (𝑆) and a

tall-skinny matrix (𝐹), or a short-long matrix by a sparse square

matrix [3, 14, 41, 47]. We run MS-BFS (all iterations) with randomly

selected initial source nodes in the frontier matrix (𝐹𝑇) and set the

aspect ratio of columns to rows [41] (which determines parallelism)

to 2
7
, 2

9
and 2

11
. Filtering of visited nodes after each iteration is

performed offline and not included in runtime.

• Tensor Algebra—Gram: Beyond SpMSpM, we evaluate a higher-

order tensor kernel called Gram, a common sub-routine for comput-

ing a Tucker decomposition [5, 23]. This is done by contracting the

3-tensor, 𝜒 , with itself over two indices (𝑗, 𝑘), given by the Einsum

𝐺
(0)
𝑖,𝑙

= 𝜒𝑖 𝑗𝑘 𝜒𝑙 𝑗𝑘 where 𝐺
(0)
𝑖,𝑙

has shape 𝐼 × 𝐼 , and 𝑙 ranges from
[0, 𝐼).

5.1.3 Datasets. We use a subset of matrices from the SuiteSparse

Matrix Collection [19]. The matrices represent real-world graphs

with varying densities (from 0.0006% to 0.356% dense) and sparsity

patterns.

5.2 Evaluation framework and baselines
Our performance evaluation showcases how DRT can be incor-

porated into prior accelerators, regardless of dataflow, and re-

duce their memory traffic. Source code is on GitHub at https:

//github.com/FPSG-UIUC/DRT [1].

https://github.com/FPSG-UIUC/DRT
https://github.com/FPSG-UIUC/DRT

Dynamic Reflexive Tiling ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

5.2.1 Study 1: High-fidelity (cycle-level) analysis of ExTensor+DRT
and comparison to CPU. Our main result demonstrates how DRT

can augment and improve ExTensor—the prior-art scheme in sparse

tiling [30].

Cycle-level simulation of ExTensor and DRT. We model ExTen-

sor using cycle-level simulation, including all on-chip components

(buffers, intersection units, etc.). For configurations using DRT, we

model the tile extractors (Section 4) at cycle-level. We use queuing

models for the network-on-chip (NoC), buffers, and DRAM—which

ensure data transfers are not allowed to exceed peak bandwidth.

We note that ExTensor’s memory access patterns (with and with-

out DRT) exhibit high spatial locality and regular communication

patterns (e.g., multicast) [30]. Thus, a queuing model is sufficient to

capture memory-level effects (e.g., DRAM burst length). To ensure

the simulator is functionally correct, we validate the output sparsity

produced by the simulation against the results from Intel MKL.

ExTensor architecture. ExTensor uses a 3-level memory hierar-

chy (DRAM, global buffer, PE local buffers) with S-U-C tiling at

each level. We evaluate two variants of ExTensor. First, the original

design (denoted ExTensor) [30]. Second, a variant (ExTensor-OP)

which uses an outer-product dataflow between the global and lo-

cal buffers that removes a performance bottleneck we found in

the original design. To reduce output traffic from outer-product,

ExTensor-OP uses multiply-and-merge [42]; however, it performs

local reductions of partial sums in output tiles until those tiles need

to be spilled to memory. In addition, it uses a parallelized variant

of ExTensor’s skip-based intersection unit.

For ExTensor and ExTensor-OP’s S-U-C tiling, we sweep dif-

ferent static tile shapes for each workload and use the shape that

performs best per workload. Thus, our evaluation represents a best-

case scenario for an S-U-C scheme.

Integrating DRT. We integrate DRT into ExTensor-OP, forming

ExTensor-OP-DRT (or TACTile). Specifically, logic responsible for
filling the global buffer and PE local buffers is modified to implement

the S-DOPs with tile extractors from Section 4. Thus, DRT sub-

divides tiles twice. First, an S-DOP builds D-N-C macro tiles from

DRAM to be stored in the global buffer. Each of these tiles are broken

down into macro sub-tiles to be distributed to the PE buffers.

CPU baseline. We show results relative to Intel’s MKL, evalu-

ated on a 3 GHz (3.5 GHz turbo) Intel Xeon-E5-2687W with 12/24

cores/threads, a 30 MB LLC, and 4 DRAM channels with a peak

bandwidth of 68.25 GB/s.

Normalizing accelerator configurations. Both accelerators run at

a 1 GHz on-chip frequency with 128 PEs. We set accelerator DRAM

bandwidth and on-chip storage (30 MB global buffer, 32 KB local

buffers) to match the CPU LLC and local caches. Note, we found

in our area analysis (Section 6.5) that on-chip memory dominated

total area. Thus, we use a design-time search for the number of

MACCs relative to the buffers to determine the PE count of 128.

5.2.2 Study 2: DRAM-traffic analysis of OuterSPACE+DRT and Mat-
Raptor+DRT. DRT can be incorporated into and reduce the DRAM

traffic of additional accelerators that represent different major SpM-

SpM dataflows. We evaluate DRT integrated into OuterSPACE [42]

(an outer-product dataflow) and MatRaptor [49] (a row-wise Gus-

tavson’s dataflow). We idealize these accelerators’ on-chip imple-

mentations, assuming they can reach their DRAM-bound perfor-

mance. As such, these evaluations also provide insight into the po-

tential performance improvements on SpArch [61], GAMMA [60],

InnerSp [8], and other SpMSpM accelerators designed around the

same dataflows. For each accelerator, three variants are evaluated:

an untiled variant (which each paper originally reported), a variant

that uses S-U-C tiling, and a variant with DRT (D-N-C tiling). The

latter variants apply a single level of tiling across all dimensions.

5.2.3 Study 3: SW Implementation/Traffic Analysis of DRT. Given
that DRT is a primitive that can be applied in a variety of accel-

erators, a natural question is whether it can be used outside of

accelerators. We leave a thorough study for future work; however,

we implement SW variants of S-U-C and DRT and perform an or-

acle, best-case analysis to determine their potential in improving

SpMSpM memory traffic.

5.2.4 DRT configuration time parameters (all studies). At configu-
ration time, all on-chip buffers (LLB and PE buffers) are statically

split across all tensors (see 1 and 2 in Figure 4), with the same

partition used for all workloads. For example, 𝐴 might get 5% of

the buffer, 𝐵 45% of the buffer, and 𝑍 50% of the buffer. Likewise,

input matrices are pre-processed into micro tiles of shape 32 × 32

for all workloads. We chose these partitions/micro tile shape based

on a sweep that resulted in best average performance.

6 EVALUATION
6.1 Study 1: Main Results
6.1.1 Linear Algebra (SpMSpM). Figure 6 compares the perfor-

mance between ExTensor-OP-DRT, ExTensor-OP, and ExTensor

relative to the CPU for (𝑆2). On average, ExTensor-OP-DRT per-

forms 1.7x and 2.4x better than ExTensor-OP and ExTensor, re-

spectively. Note that the only difference between ExTensor-OP-

DRT and ExTensor-OP is in the tiling mechanism (DRT). The main
takeaway—which holds in many of the other evaluations we perform—
is that ExTensor-OP-DRT’s average actual performance exceeds other
configurations’ DRAM-bound (oracle) performances (red dots). This
showcases the benefit of ExTensor-OP-DRT’s improved data reuse

capabilities.

Workloads bcsstk17 and p2p-Gnutella31 fit entirely in the LLB. As
expected, they have similar arithmetic intensity and speedup across

S-U-C and DRT, since data need only be fetched once from main

memory in both cases. For other workloads, ExTensor-OP-DRT

consistently decreases the DRAM traffic, thereby increasing the

achievable peak throughput (red dots) compared to ExTensor-OP.

By maximally filling the on-chip buffer on each iteration of the

compute space, DRT reduces the number of passes required over

the tensors. The improvement in actual performance of ExTensor-

OP-DRT over its static variant for workloads with unstructured

patterns (right of the red line) points to the pre-compute, load

balancing (or data-balancing) aspect of DRT in distributing tiles

such that PEs are maximally occupied.

Additionally, compared to ExTensor-OP-DRT, ExTensor-OP

nearly reaches its peak throughput for all workloads. For sparser

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Odemuyiwa, et al.

matrices, ExTensor-OP-DRT reaches its peak, but as matrices be-

come more dense in both pattern regimes, a gap occurs between

achieved performance and peak-achievable performance. On-chip

effects such as intersection logic and round-robin distribution of

tasks across PEs become prominent. There is further opportunity

in optimizing on-chip logic to better convert improved data reuse

into speedup.

Tall-skinny matrices: When SpMSpM involves tall-skinny ma-

trices (Figure 7), ExTensor-OP-DRT improves performance by 3.5x,

3.5x, and 5.2x over CPU MKL, ExTensor, and ExTensor-OP, respec-

tively. The arithmetic intensity of ExTensor-OP-DRT is 4.2x and

5.1x greater than that of ExTensor and ExTensor-OP, respectively,

indicating an improvement in data reuse. Interestingly, static tiling

at times does worse compared to CPU MKL, while DRT is able

to consistently find tile shapes that reduce memory overhead. As

explained in Section 5, our S-U-C configurations sweep tile shapes

and use whichever achieves best performance. However, any static

tile shape may lead to poor overall performance, e.g., if the matrix

has irregular sparsity.

For the tall-skinny cit workload, we found that ExTensor-OP-

DRT improves input traffic at the expense of increased output traffic,

resulting in a net loss compared to ExTensor in this specific case.

Additionally, the input tensors of both p2p-Gnutella workloads fit
entirely into the on-chip buffer. As such, the results are an artifact

of the difference in output handling between the two accelerators.

ExTensor-OP-DRT tends to reach DRAM-bound performance

for workloads where the first operand (𝐴) is short and long, but

has larger headroom when 𝐴 is tall and skinny. Note that when

𝐴 is tall and skinny, the system must evaluate more micro tile-

granular tasks compared to short-long. This causes the tall-skinny

workloads to be more sensitive to intersection time. Coincidentally,

further experiments indicate that the headroom is closed by an

oracle intersection unit.

6.1.2 Graph Analytics (MS-BFS). Figure 8 shows the relative

speedup for the combined BFS iterations per workload. On av-

erage, ExTensor-OP-DRT is 3.6x and 5.5x faster than ExTensor and

the CPU, respectively. Matrices with a larger row length variation,

such as the last 6 workloads in Figure 8 (ranging from 3 to 12 in row

variation), have an average speedup of 7.2x compared to an average

speedup of 2.7x for the remaining matrices with row variations of

less than 2. At lower variation, an S-U-C accelerator is able to mine

significant reuse since static tile shapes will have similar footprints.

6.1.3 Tensor Algebra (Gram). To understand the opportunity in

reducing DRAM traffic for higher-order tensors, we run ExTensor-

OP and ExTensor-OP-DRT for the Gram computation (Section 5.1.2).

Figure 9 shows the arithmetic intensity compared to TACO [34] for

ExTensor-OP and ExTensor-OP-DRT over a subset of 3D tensors

from the FROSTT suite [46] and 3D tensors generated using Benson

et al.’s framework [10]. Rather than growing along two dimensions,

as in prior kernels, DRT must now grow across three dimensions,

two of which are contracted (Section 5.1.2). We generate the CPU

result by passing the Einsum to the TACO compiler [34]. On average,

ExTensor-OP-DRT shows a 16.6x and 3.9x arithmetic improvement

over ExTensor-OP and TACO, respectively. Again, note that S-U-

C will not always see benefits over the CPU as its performance

depends on the chosen static tile size. In particular, the gap between

S-U-C and DRT decreases as density increases. This is expected, as

at lower sparsity, a dynamic tiling strategy should be better able to

collect sparse tiles together for reuse.

6.2 Study 2: Portability To Accelerators
Figure 10 (top) shows the performance comparison between Out-

erSPACE variants, with and without DRT. The red dots indicate

that tiling increases arithmetic intensity by 3x and 5.1x in S-U-

C-based schemes and DRT, respectively, over the baseline. This

improvement is due to tiling 𝐴 and 𝐵. The untiled baseline (origi-

nal OuterSPACE proposal) distributes columns of 𝐴 and rows of 𝐵,

giving 𝐴 and 𝐵 perfect reuse, but 𝑍 poor reuse. Tiling of 𝐴 and 𝐵

reduces the working set size of output partial products, allowing

them to be partially reduced on-chip, which reduces memory traffic.

Additionally, tiling enables partial reuse across all three tensors.

Figure 10 (bottom) shows the same for MatRaptor. The baseline

tiles along the𝑀 dimension, yielding perfect reuse on𝐴, poor reuse

on 𝐵, and partial reuse on 𝑍 . Using S-U-C and DRT tiling increases

𝐵’s input reuse which in turn reduces overall DRAM traffic.

In both cases, the untiled baseline (dashed-line) assumes ideal

on-chip behavior. The actual untiled baseline’s performance will be

lower. Importantly, the DRAM-bound limit with DRT is greater than

the untiled baseline in nearly all cases. For the actual throughput

(height of each bar), we use a round-robin distributor to choose

which PEs evaluate each task. This is not fundamental, but can lead

to poor load balancing.With amore sophisticated work-distribution

strategy, we believe the actual performance will approach the ideal.

6.3 Study 3: Software Best-Case Analysis
Although we propose DRT as a hardware unit for accelerators, we

also evaluate its potential in a software environment.We implement

DRT for the CPU, apply it to SpMSpM, and track its memory traffic.

This variant follows an inner-product dataflow when computing

on macro tiles in the LLC. Inner-product has perfect reuse on the

output; thus, we use the alternating DRT variant as it promotes

reuse on the inputs. Figure 11 shows the memory overhead of DRT

and S-U-C, compared to the untiled CPU SpMSpM implementation.

DRT provides a 7.29x and 2.94x improvement over no tiling and S-U-

C tiling, respectively. For diagonal matrices, the gap between S-U-C

and DRT decreases as input density increases. We expect this as S-

U-C is better able to exploit reuse with denser tiles. At lower density,

DRT is better able to collect sparse tiles to maximally fill the on-chip

LLC. Likewise, for the random, unstructured pattern workloads,

DRT consistently outperforms S-U-C. Tiling provides no benefit

for two workloads (circled in red). These two workloads have a

metadata overhead of over 8x their untiled variants, leading to an

increase in raw DRAM traffic which tiling is unable to overcome.

This is not fundamental and rather due to the U rank in the micro

tiles’ T-UC representations. We expect a T-CC representation will

resolve this.

6.4 Bandwidth Scaling Study
In Section 6.1.1 we note that intersection was one of the potential

bottlenecks. We now evaluate that claim. Figure 12 analyzes how a

DRT-based accelerator’s performance scales as memory bandwidth

Dynamic Reflexive Tiling ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

15/02/2023, 18:18 visualization (42).svg

file:///home/toluwao/Downloads/visualization (42).svg 1/1

0
5
10
15
20

Sp
ee

du
p

ov
er

C
PU

 M
K

L

m
c2
de
pi

m
ac
_e
co
n

sc
irc
uit

sh
ips
ec
1

pw
tk

co
ns
ph ca
nt

rm
a1
0

pd
b1
HY

S

bc
ss
tk1

7

em
ail
-E
u

am
az
on
03

sx
-a
sk
ub

p2
p-
Gn

ut

so
c-
sig
n

so
c-
Ep
in

co
p2
0k
_A

cit
-H
ep
P

sx
-m
at
ho

ge
om

ea
n

ExTensor
ExTensor-OP
ExTensor-OP-DRT

Figure 6: ExTensor-OP-DRT, ExTensor-OP, and ExTensor performance relative to CPU MKL (𝑆2). Workloads are in two groups: to the left of the
red line are matrices with a predominant diamond band sparsity pattern, and to the right are matrices with unstructured patterns. Within each
sparsity pattern group, matrices are sorted by increasing input density. Red dots indicate DRAM-bound performance given the arithmetic
intensity of that workload.

15/02/2023, 18:22 visualization (43).svg

file:///home/toluwao/Downloads/visualization (43).svg 1/1

0

5

10

Sp
ee

du
p

ov
er

C
PU

 M
K

L

am
az
o

am
az
o

sx
-a
s

sx
-a
s

m
ac
_e

m
ac
_e

sc
irc

sc
irc

p2
p-
G

p2
p-
G

si
gn
-

si
gn
-

en
ro
n

en
ro
n

so
c-
E

so
c-
E

sh
ip
s

sh
ip
s

pw
tk
_

pw
tk
_

ci
t-H

ci
t-H

m
at
ho

m
at
ho

co
ns
p

co
ns
p

ca
nt
_

ca
nt
_

rm
a1
0

rm
a1
0

pd
b1
H

pd
b1
H

bc
ss
t

bc
ss
t

ge
om

e

ExTensor
ExTensor-OP
ExTensor-OP-DRT

Figure 7: ExTensor, ExTensor-OP, and ExTensor-OP-DRT performance (𝐹𝑇 · 𝐹 and 𝐹 · 𝐹𝑇). Workloads are sorted by increasing input density.
The first workload is a short-long matrix by its transpose and the second workload is a tall-skinny matrix by its transpose. Red dots indicate
DRAM-bound performance.

14/02/2023, 17:41 visualization (25).svg

file:///home/toluwao/Downloads/visualization (25).svg 1/1

0

5

10

15

20

Sp
ee

du
p

ov
er

 C
PU

 M
K

L

pw
tk

am
az
on
03 ca
nt

co
ns
ph

pd
b1
HY
S

bc
ss
tk1
7

sh
ips
ec
1

rm
a1
0

co
p2
0k

ma
c_
ec
on

sc
irc
uit cit p2
p

so
c-E
pin

sig
n-e
pi

ma
tho
ve
r

em
ail
-E
u

en
ron

as
ku
bu
nt

ge
om
ea
n

ExTensor
ExTensor-OP-DRT

Figure 8: Accelerators ExTensor and ExTensor-OP-DRT performance
across all MS-BFS iterations (𝐹𝑇 · 𝑆). Workloads are sorted in increas-
ing coefficient of row variation (of 𝑆), a measure of the variance in
the number of non-zeros of each matrix row [39]. The aspect ratio
of matrix columns to rows is 27. Results for aspect ratios of 29 and
2
11 follow a similar pattern. Red dots indicate DRAM-bound perfor-
mance.

2/16/23, 1:13 PM visualization (5).svg

file:///C:/Users/toluw/Downloads/visualization (5).svg 1/1

0.000001%0.0001% 0.01% 0.1% 1% 10%
Tensor Density

0.001
0.01

0.1
1

10
100

1,000

A
I I

nc
re

as
e

ov
er

 T
A

C
O

ExTensor-OP
ExTensor-OP-DRT

Figure 9: Arithmetic intensity compared to TACO [34] for the Gram
computation for S-U-C and D-N-C. Higher is better. Each S-U-C, D-
N-C pair indicates the gap in arithmetic intensity, and thus DRAM
traffic, for a given workload.

increases, i.e., by raising the roof. To show an upper bound on band-

width scaling, we compare three variants of ExTensor-OP-DRT: (1)

ExTensor-OP-DRT using the serial, Skip-Based intersection unit

from ExTensor [30], (2) ExTensor-OP-DRT with a parallelized inter-

section unit, (3) ExTensor-OP-DRT with an ideal “Serial-Optimal”

intersection that enables one MACC per cyle per PE, regardless of

sparsity pattern. We show Serial-Optimal to avoid any intersection-

related bottleneck, i.e., to visualize potential.

We observe two things. First, performance scales as DRAM band-

width improves. This suggests that DRT enables workloads to be

sufficiently close to the roofline and be bandwidth limited. Secondly,

performance is still bottlenecked by intersection. An improved in-

tersection unit enables better performance scaling. For example, at

the 8x bandwidth point, Serial-Optimal achieves a 3.9× performance

improvement over its Baseline, which is a 1.78× improvement rela-

tive to ExTensor-OP-DRT with the same bandwidth.

6.5 Extraction Overhead, Area, and Energy
We evaluate the performance behavior of two different tile extractor

implementations built into the ExTensor design. First, an ideal ex-

tractor that performs DRT in 0 cycles. Second, the parallel extractor

described in Section 4.2. We observed that the performance dif-

ference between both tile extractor implementations was minimal

(< 1% for each workload). This is due to the pipelining discussed in

Section 4.2.3.

Finally, we use Accelergy [57], an energy/area estimation tool, to

model ExTensor, ExTensor-OP, and ExTensor-OP-DRT. ExTensor-

OP and ExTensor-OP-DRT both have a 0.1% area overhead com-

pared to ExTensor. The global buffer (which is the same across

designs) accounts for the lion’s share of the area—99.75%. The tile

extractor takes 45% of the remaining area (.25%), with the remainder

going to intersection, the network on chip, and other logic. Using

the geomean of energy consumption across various workloads,

ExTensor-OP-DRT uses 85% and 22% less energy than ExTensor-OP

and ExTensor, respectively. Figure 13 shows the area breakdown of

ExTensor-OP-DRT.

6.6 Design Space Exploration
We explore various parameters tied to ExTensor-OP-DRT, with

some results shown in Figures 14–15.

Sweep Buffer Partitioning Allocations. One design point

is the choice of buffer allocation to tensors. Figure 14 shows the

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Odemuyiwa, et al.

0
10
20
30
40

Sp
ee

du
p

ov
er

O
ut

er
SP

A
C

E
mc2

de
pi

mac
_e

co
n

sc
irc

uit
sh

ips
ec

1

pw
tk

co
ns

ph ca
nt

rm
a1

0
pd

b1
HYS

bc
ss

tk1
7

em
ail

-E
u

am
az

on
03 p2
p

sig
n-e

pi
so

c-E
pin

co
p2

0k cit
math

ov
er

ge
om

ea
n

OuterSPACE-Like SUC
OuterSPACE-Like DRT

Figure 10: (Top) OuterSPACE-SUC and OuterSPACE-DRT performance relative to the baseline OuterSPACE accelerator (𝑆2). (Bottom) MatRaptor-
SUC and MatRaptor-DRT performance relative to untiled MatRaptor (𝑆2). We group workloads according to sparsity pattern, with diagonal-like
patterns on the left and unstructured patterns on the right. Within each group, we order workloads by increasing input density (see Figure 6).
Red dots indicate DRAM-bound performance.

2/15/23, 5:38 AM visualization (3).svg

file:///C:/Users/toluw/Downloads/visualization (3).svg 1/1

0.000001 0.00001 0.0001 0.001 0.01
Input Density

0.015625
0.03125

0.0625
0.125

0.25
0.5

1
2
4
8

16
32

Im
pr

ov
em

en
t o

ve
r

U
nt

ile
d

Sp
M

Sp
M SW SUC

SW DNC

Tiling Type

Diamond Band
Random

Sparsity Pattern

Figure 11: Improvement in memory traffic over an untiled imple-
mentation for S-U-C tiling and DRT tiling in software (𝑆2). Red ovals
indicate outliers whose tiled metadata overhead was over 8× com-
pared to no tiling (this is not fundamental). Further discussed in
Section 6.3.

14/02/2023, 21:27 visualization (32).svg

file:///home/toluwao/Downloads/visualization (32).svg 1/1

0
2
4
6
8

10
12
14
16
18
20
22

Sp
ee

du
p

ov
er

 C
PU

 M
K

L

1x 2x 4x 8x

Skip-Based
Parallel
Serial-Optimal

Figure 12: Performance scaling as a function of DRAM bandwidth
(GB/s).

2/15/23, 5:36 AM visualization (2).svg

file:///C:/Users/toluw/Downloads/visualization (2).svg 1/1

1e-7 0.00001 0.0001 0.001 0.01 0.1 1
Fraction of Total Area

Global Buffer
Intersection

MACCs
NoC

RR Scheduler
Tile Extractors

U
ni

t

Figure 13: Area breakdown of ExTensor-OP-DRT. Overall, ExTensor-
OP-DRT adds 0.1% die area to the baseline design (ExTensor [30]).

runtime performance for various points in the A/B/O partitioning

space for the LLB. The dataflow at this level is 𝐵 stationary. The

red line, corresponding to when 𝑂 receives 0% of the buffer space,

indicates the capacity limit on possible partitions for tensors 𝐴 and

𝐵. Results indicate that smaller/larger allocations for 𝐴/𝐵 perform

better. When we zoom in on this region (small A partition), most

workloads are insensitive to an increase in 𝐵’s partition beyond 30%.

However, since the dataflow produces partial outputs, workloads

with dense outputs, require enough space for 𝑂 . Thus, static buffer

allocations should consider allocating more space to the stationary

tensor (𝐵 in this case), while providing enough space for the output

to better store partial outputs. We consider dynamic allocations for

future work.

Alternating DRT. ExTensor-OP-DRT grows tiles by first grow-

ing along the contracted 𝐾 rank as much as possible, then growing

along 𝐽 , then growing along 𝐼 . Section 3.2 (Alg 2, Line 7) notes a

different growth strategy where DRT alternatively grows by one

on each dimension. For the 𝑆2 workload, this translates to growing

once on contracted rank 𝐽 , once on uncontracted rank 𝐾 , and so on

until the 𝐵 macro tile reaches its buffer capacity. DRT then creates

the𝐴 macro tile by growing 𝐼 . Figure 15 shows the overhead of this

growing variant, compared to the original ExTensor-OP-DRT vari-

ant. In nearly all cases, the alternating variant incurs a memory and

runtime overhead, which, on further analysis, is due to an increase

in output traffic. By growing along the contracted dimension first,

ExTensor-OP-DRT’s default variant leads to tile shapes that are

longer in the contracted dimension, which in turn leads to better

reuse of the output macro tile for the current task.

Sweep starting tile size. As noted in Section 3.2, the DRT

algorithm can have an initial macro tile shape from which it grows.

This affects how long or short the final tile shape will be along a

particular dimension. Figure 16 shows the results of sweeping the

starting tile shape.

Sweep micro tile shape. Figure 17 shows the impact of micro

tile shape on overall memory traffic. As micro tile shape increases,

DRT approaches S-U-C tiling, reducing the available opportunity

in maximally filling the buffer. Smaller micro tile shapes, in the

general case, incur metadata overhead, since smaller sizes lead to

more micro tiles to describe. Future work will consider deciding

Dynamic Reflexive Tiling ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

2/14/23, 11:32 PM visualization.svg

file:///C:/Users/toluw/Downloads/visualization.svg 1/1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%
A Partition (% of total)

0%

20%

40%

60%

80%

100%

B
 P

ar
tit

io
n

(%
 o

f t
ot

al
) 0.002

0.004
0.006
0.008
0.010
0.012

Runtime (ms)

Figure 14: Geomean performance (across the same matrices in Fig-
ure 16) as A, B, and O partitionings change. O’s allocation shrinks
when moving diagonally from the bottom left corner (100% alloca-
tion) to the red line (0% allocation for O).

14/02/2023, 21:22 visualization (31).svg

file:///home/toluwao/Downloads/visualization (31).svg 1/1

0

1

2

3

4

mac
_e

co

sc
irc

ui
sh

ips
ec

pw
tk

co
ns

ph ca
nt

rm
a1

0
bc

ss
tk1

am
az

on
0

sig
n-e

p cit
math

ov
e

ge
om

ea
n

Traffic Overhead
Runtime Overhead

Figure 15: Overhead of alternating DRT algorithm compared to
ExTensor-OP-DRT’s greedy approach. Lower is better.

2/15/23, 12:14 AM visualization.svg

file:///C:/Users/toluw/Downloads/visualization.svg 1/1

0 50 100 150 200 250 300 350 400 450 500550
Starting Tile Size for DRT (1xJ)

0.000

0.005

0.010

0.015

0.020

0.025

R
un

tim
e

(m
s)

amazon0302
bcsstk17
cant
cit-HepPh
consph
mac_econ_fwd500
pwtk
rma10
scircuit
shipsec1
soc-sign-epinions
sx-mathoverflow

Matrix

Figure 16: Performance as the initial tile shape from which DRT
grows changes. We vary along the 𝐽 rank since this affects the sta-
tionary 𝐵 matrix.

the micro tile shape at runtime based on the sparsity pattern of an

input.

Sweep on-chip bandwidth and LLB size. For each tested work-
load, the NoC bandwidth has no significant effect on performance.

This is due to the overhead of main memory accesses. Additionally,

when sweeping the LLB capacity, most workloads are insensitive

to an increase in capacity beyond 15 MB.

7 RELATEDWORK
Due to the irregular memory access patterns of sparse tensor ker-

nels, traditional architectures are unable to reach peak performance.

This has spurred accelerator research [4, 26, 30, 40, 42, 44, 45, 49, 50,

61] with MatRaptor, GAMMA, OuterSPACE, SpArch, and ExTensor

representing state-of-the-art for SpMSpM. ExTensor and GAMMA

are two recent accelerators that tile sparse data. ExTensor adopts

2/15/23, 12:34 AM visualization (1).svg

file:///C:/Users/toluw/Downloads/visualization (1).svg 1/1

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Micro tile shape (x by x)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Tr
af

fic
 (G

B
)

bcsstk17
cant
cit-HepPh
consph
mac_econ_fwd500
pdb1HYS
rma10
scircuit
shipsec1
soc-Epinions1
sx-mathoverflow

Matrix

Figure 17: Overall traffic as micro tile shape changes. We do not show
runs suffering from out-of-memory issues.

Table 2: Sparse tiling in prior work.

Prior Work Method Kernel Tiling

OuterSPACE [42] HW SpMSpM, SpMV no explicit tiling

SpArch [61] HW SpMSpM S-N-P

MatRaptor [49] HW SpMSpM no explicit tiling

GAMMA [60] HW SpMSpM D-N-C (limited)

ExTensor [30] HW SpMSpM, SpMM, TTM/V,

SDDMM

S-U-C

ALRESCHA [4] HW SpMV, PCG S-U-C

Near Memory SpMM [24] SW(GPU) SpMM D-N-C

ASpT [32] SW(CPU, GPU) SpMM, SDDMM S-U-P dense tiles,

S-N-P sparse tiles

Locally Adaptive SpMV [51] SW(GPU) SpMV S-U-P

Hierarchical 1-D Tiling [25] SW(GPU) SpMM/V, SDDMM S-N-P

Merge-based SpMM/V [39, 59] SW(GPU) SpMM/V S-U-P

GrateTile [37] Storage format CNN (SpMM, SDDMM) S-N-C

J Stream [35] SW SpMM, SDDMM S-U-C

Split Unaligned Blocks [55] Storage format SpMV S-U-P

S-U-C tiling [4, 30, 60], where sparse tiles are treated similar to

dense tiles. GAMMA could be viewed as a nascent form of D-N-

C tiling. It distributes rows of the 𝐴 matrix, not tiles, and either

statically partitions 𝐴 or not at all in the context of Gustavson’s

dataflow. DRT is more general: it is dataflow-independent and tiles

nonuniformly along all dimensions for any dimensional problem.

Table 2 summarizes some of the common tiling schemes used in

prior work. Works are classified according to their implementation

method—HW, SW, or a proposed sparse storage format—and their

approach to tiling. On the software side there are more systematic

works regarding sparse tensor tiling [24, 25, 25, 32, 32, 32, 39, 39,

51, 59] focusing on sparse kernels containing a single, sparse input

operand. To the best of our knowledge, no such method exists for

kernels with multiple sparse operands, such as SpMSpM, as the

pattern of the output matrix is difficult to predict and co-tiling is

non-trivial.

8 CONCLUSION
We present a novel dynamic reflexive tiling (DRT) mechanism,

which builds nonuniform, coordinate space macro tiles from collec-

tions of uniform coordinate-space micro tiles. Our primary result is

that DRT—instantiated in both hardware and software modalities—

has the potential to improve performance across a range of prior

accelerators and CPU implementations. Future work will mature

the software effort and validate DRT’s ability to effectuate a net-win

performance-wise on CPUs, as it does in an accelerator setting.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Odemuyiwa, et al.

ACKNOWLEDGMENTS
The authors appreciate the financial support from a Microsoft

Research Fellowship and a Facebook PhD Fellowship. This ma-

terial is based upon work supported by the Defense Advanced

Research Projects Agency (DARPA) under Contract No. HR0011-18-

3-0007, and the National Science Foundation (NSF) under Contract

No. 1909999 and Contract No. 1942888. Any opinions, findings and

conclusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views of the

U.S. Government.

A APPENDICES
A.1 SpMSpMWorkloads
Table 3 lists the matrices used in this work. Abbreviated matrix

names appear in the paper.

Table 3: Sparsematrices used in the evaluation. Thematrices are fromHB [20],
Bova [13], DNVS [18], Hamm [28], LAW [12], Williams [56], and SNAP collec-
tion [36]. Each group is separated with a divider.

Matrix Dimensions Non-zeros (Density)

bcsstk17 [20] 11𝑘 × 11𝑘 428.6k (0.356%)

pwtk [20] 218𝑘 × 218𝑘 11.5M (0.024%)

rma10 [13] 47𝑘 × 47𝑘 2.3M (0.106%)

shipsec1 [18] 141𝑘 × 141𝑘 3.6M (0.018%)

scircuit [28] 171𝑘 × 171𝑘 1M (0.0033%)

enron [12] 69𝑘 × 69𝑘 276k (0.0058%)

pdb1HYS [56] 36𝑘 × 36𝑘 4.3M (0.328%)

cant [56] 63𝑘 × 63𝑘 4M (0.103%)

consph [56] 83𝑘 × 83𝑘 6M (0.087%)

mac_econ_fwd500 [56] 207𝑘 × 207𝑘 1.3M (0.003%)

cop20k_A [56] 121𝑘 × 121𝑘 2.6M (0.018%)

mc2depi [56] 526𝑘 × 526𝑘 2.1M (0.00076%)

sx-mathoverflow [36] 25𝑘 × 25𝑘 240k (0.0389%)

cit-HepPh [36] 35𝑘 × 35𝑘 421k (0.0353%)

soc-Epinions1 [36] 76𝑘 × 76𝑘 509k (0.0088%)

p2p-Gnutella31 [36] 63𝑘 × 63𝑘 148k (0.0038%)

soc-sign-epinions [36] 132𝑘 × 132𝑘 841k (0.0048%)

sx-askubuntu [36] 159𝑘 × 159𝑘 597k (0.0024%)

email-EuAll [36] 265𝑘 × 265𝑘 420k (0.0006%)

amazon0302 [36] 262𝑘 × 262𝑘 1.2M (0.0018%)

REFERENCES
[1] 2023. Dynamic Reflexive Tiling. https://github.com/FPSG-UIUC/DRT

[2] Peter Ahrens and Erik G. Boman. 2020. On Optimal Partitioning For Sparse Matri-

ces In Variable Block Row Format. CoRR abs/2005.12414 (2020). arXiv:2005.12414

https://arxiv.org/abs/2005.12414

[3] Hasan Metin Aktulga, Aydin Buluç, Samuel Williams, and Chao Yang. 2014.

Optimizing Sparse Matrix-Multiple Vectors Multiplication for Nuclear Configura-

tion Interaction Calculations. In International Parallel and Distributed Processing
Symposium (IPDPS). 1213–1222. https://doi.org/10.1109/IPDPS.2014.125

[4] Bahar Asgari, Ramyad Hadidi, Tushar Krishna, Hyesoon Kim, and Sudhakar Yala-

manchili. 2020. ALRESCHA: A Lightweight Reconfigurable Sparse-Computation

Accelerator. In International Symposium on High Performance Computer Architec-
ture (HPCA). 249–260. https://doi.org/10.1109/hpca47549.2020.00029

[5] W. Austin, G. Ballard, and T. G. Kolda. 2016. Parallel Tensor Compression for

Large-Scale Scientific Data. In International Parallel and Distributed Processing
Symposium (IPDPS). 912–922. https://doi.org/10.1109/IPDPS.2016.67

[6] Ariful Azad, Aydin Buluc, and John Gilbert. 2015. Parallel Triangle Counting and

Enumeration Using Matrix Algebra. In International Parallel and Distributed Pro-
cessing Symposium Workshop (IPDPS). 804–811. https://doi.org/10.1109/ipdpsw.

2015.75

[7] Ariful Azad, Georgios A Pavlopoulos, Christos A Ouzounis, Nikos C Kyrpides,

and Aydin Buluç. 2018. HipMCL: a high-performance parallel implementation of

the Markov clustering algorithm for large-scale networks. Nucleic Acids Research
46, 6 (Jan. 2018), e33:1–11. https://doi.org/10.1093/nar/gkx1313

[8] Daehyeon Baek, Soojin Hwang, Taekyung Heo, Daehoon Kim, and Jaehyuk Huh.

2021. InnerSP: A Memory Efficient Sparse Matrix Multiplication Accelerator

with Locality-Aware Inner Product Processing. In 30th International Conference
on Parallel Architectures and Compilation Techniques (PACT 2021), Jaejin Lee and

Albert Cohen (Eds.). IEEE, 116–128. https://doi.org/10.1109/PACT52795.2021.

00016

[9] Gerald Baumgartner, Alexander A. Auer, David E. Bernholdt, Alina Bibireata,

Venkatesh Choppella, Daniel Cociorva, Xiaoyang Gao, Robert J. Harrison, So

Hirata, Sriram Krishnamoorthy, Sandhya Krishnan, Chi-Chung Lam, Qingda Lu,

Marcel Nooijen, Russell M. Pitzer, J. Ramanujam, P. Sadayappan, and Alexander

Sibiryakov. 2005. Synthesis of High-Performance Parallel Programs for a Class

of ab Initio Quantum Chemistry Models. Proc. IEEE 93, 2 (Feb. 2005), 276–292.

https://doi.org/10.1109/JPROC.2004.840311

[10] Austin R. Benson and Grey Ballard. 2015. A Framework for Practical Parallel

Fast Matrix Multiplication. In Proceedings of the 20th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP 2015). 42–53. https:

//doi.org/10.1145/2688500.2688513

[11] Maciej Besta, Raghavendra Kanakagiri, Harun Mustafa, Mikhail Karasikov, Gun-

nar Rätsch, Torsten Hoefler, and Edgar Solomonik. 2020. Communication-

Efficient Jaccard similarity for High-Performance Distributed Genome Com-

parisons. In International Parallel and Distributed Processing Symposium (IPDPS).
1122–1132. https://doi.org/10.1109/IPDPS47924.2020.00118

[12] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I: Com-

pression Techniques. In Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004). ACM Press, 595–601.

[13] Steve Bova. 1997. Model of Charleston Harbor. https://sparse.tamu.edu/bova

Nichols Research Corporation.

[14] Aydın Buluç and John R. Gilbert. 2012. Parallel Sparse Matrix-Matrix Multiplica-

tion and Indexing: Implementation and Experiments. SIAM Journal of Scientific
Computing 34, 4 (2012), 170–191. https://doi.org/10.1137/110848244

[15] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,

Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. 2014. DaDianNao:

A Machine-Learning Supercomputer. In International Symposium on Microarchi-
tecture (MICRO). 609–622. https://doi.org/10.1109/MICRO.2014.58

[16] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial Archi-

tecture for Energy-Efficient Dataflow for Convolutional Neural Networks. In

International Symposium on Computer Architecture (ISCA). 367–379. https:

//doi.org/10.1109/isca.2016.40

[17] Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2018. Format Abstrac-

tion for Sparse Tensor Algebra Compilers. Proc. ACM Program. Lang. 2, OOPSLA,
Article 123 (Oct. 2018), 30 pages. https://doi.org/10.1145/3276493

[18] Christian Damhaug. 1999. Positive definite matrices from Christian Damhaug,

DNV Software. https://sparse.tamu.edu/DNVS

[19] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix

Collection. ACM Trans. Math. Software 38, 1 (Nov. 2011), 1:1–1:25. https://doi.

org/10.1145/2049662.2049663

[20] Iain S Duff, Roger G Grimes, and John G Lewis. 1989. Sparse matrix test problems.

ACM Transactions on Mathematical Software (TOMS) 15, 1 (March 1989), 1–14.

[21] A. Einstein. 1916. The Foundation of the General Theory of Relativity. Annalen
der Physik 354, 7 (Jan. 1916), 769–822. https://doi.org/10.1002/andp.19163540702

[22] Glen Evenbly. 2020. Tutorial 1: Tensor Contractions. https://www.tensors.net/

tutorial-1

[23] Zisen Fang, Xiaowei Yang, Le Han, and Xiaolan Liu. 2019. A Sequentially Trun-

cated Higher Order Singular Value Decomposition-Based Algorithm for Tensor

Completion. IEEE Transactions on Cybernetics 49, 5 (May 2019), 1956–1967.

https://doi.org/10.1109/TCYB.2018.2817630

[24] Daichi Fujiki, Niladrish Chatterjee, Donghyuk Lee, and Mike O’Connor. 2019.

Near-Memory Data Transformation for Efficient Sparse Matrix Multi-Vector

Multiplication. In International Conference for High Performance Computing, Net-
working, Storage and Analysis. ACM, Article 55, 17 pages. https://doi.org/10.

1145/3295500.3356154

[25] Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. 2020. Sparse GPU

Kernels for Deep Learning. In International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). IEEE/ACM, Article 17, 14 pages.

https://doi.org/10.1109/SC41405.2020.00021

[26] Ashish Gondimalla, Noah Chesnut, Mithuna Thottethodi, and T. N. Vijaykumar.

2019. SparTen: A Sparse Tensor Accelerator for Convolutional Neural Networks.

In International Symposium on Microarchitecture (MICRO). ACM, 151–165. https:

//doi.org/10.1145/3352460.3358291

[27] Giulia Guidi, Marquita Ellis, Daniel Rokhsar, Katherine Yelick, and Aydın Buluç.

2019. BELLA: Berkeley Efficient Long-Read to Long-Read Aligner and Overlapper.

bioRxiv (Oct. 2019). https://doi.org/10.1101/464420

[28] Steve Hamm. 2001. Semiconductor simulation matrices from Steve Hamm, Mo-

torola, Inc. https://sparse.tamu.edu/Hamm

https://github.com/FPSG-UIUC/DRT
https://arxiv.org/abs/2005.12414
https://arxiv.org/abs/2005.12414
https://doi.org/10.1109/IPDPS.2014.125
https://doi.org/10.1109/hpca47549.2020.00029
https://doi.org/10.1109/IPDPS.2016.67
https://doi.org/10.1109/ipdpsw.2015.75
https://doi.org/10.1109/ipdpsw.2015.75
https://doi.org/10.1093/nar/gkx1313
https://doi.org/10.1109/PACT52795.2021.00016
https://doi.org/10.1109/PACT52795.2021.00016
https://doi.org/10.1109/JPROC.2004.840311
https://doi.org/10.1145/2688500.2688513
https://doi.org/10.1145/2688500.2688513
https://doi.org/10.1109/IPDPS47924.2020.00118
https://sparse.tamu.edu/bova
https://doi.org/10.1137/110848244
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1109/isca.2016.40
https://doi.org/10.1109/isca.2016.40
https://doi.org/10.1145/3276493
https://sparse.tamu.edu/DNVS
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1002/andp.19163540702
https://www.tensors.net/tutorial-1
https://www.tensors.net/tutorial-1
https://doi.org/10.1109/TCYB.2018.2817630
https://doi.org/10.1145/3295500.3356154
https://doi.org/10.1145/3295500.3356154
https://doi.org/10.1109/SC41405.2020.00021
https://doi.org/10.1145/3352460.3358291
https://doi.org/10.1145/3352460.3358291
https://doi.org/10.1101/464420
https://sparse.tamu.edu/Hamm

Dynamic Reflexive Tiling ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

[29] Kartik Hegde, Rohit Agrawal, Yulun Yao, and Christopher W. Fletcher. 2018.

Morph: Flexible Acceleration for 3D CNN-based Video Understanding. In

IEEE/ACM International Symposium on Microarchitecture (MICRO ’18). 933–946.
https://doi.org/10.1109/MICRO.2018.00080

[30] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago, Aamer

Jaleel, Edgar Solomonik, Joel Emer, and Christopher W. Fletcher. 2019. ExTen-

sor: An Accelerator for Sparse Tensor Algebra. In International Symposium on
Microarchitecture (MICRO). 319–333. https://doi.org/10.1145/3352460.3358275

[31] Kartik Hegde, Jiyong Yu, Rohit Agrawal, Mengjia Yan, Michael Pellauer, and

Christopher W. Fletcher. 2018. UCNN: Exploiting Computational Reuse in Deep

Neural Networks via Weight Repetition. In International Symposium on Computer
Architecture (ISCA). IEEE, 674–687. https://doi.org/10.1109/isca.2018.00062

[32] Changwan Hong, Aravind Sukumaran-Rajam, Israt Nisa, Kunal Singh, and P.

Sadayappan. 2019. Adaptive Sparse Tiling for SparseMatrixMultiplication. In Pro-
ceedings of the 24th Symposium on Principles and Practice of Parallel Programming.
ACM, 300–314. https://doi.org/10.1145/3293883.3295712

[33] Daniel Kats and Frederick R. Manby. 2013. Sparse tensor framework for imple-

mentation of general local correlation methods. The Journal of Chemical Physics
138, 14 (2013), 144101. https://doi.org/10.1063/1.4798940

[34] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amaras-

inghe. 2017. The Tensor Algebra Compiler. Proceedings of the ACM on Program-
ming Languages 1, OOPSLA (Oct. 2017), 77:1–77:29. https://doi.org/10.1145/

3133901

[35] Süreyya Emre Kurt, Aravind Sukumaran-Rajam, Fabrice Rastello, and P. Sa-

dayyapan. 2020. Efficient Tiled Sparse Matrix Multiplication through Ma-

trix Signatures. In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis. Article 87, 14 pages.

https://doi.org/10.1109/SC41405.2020.00091

[36] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[37] Y. Lin, Hung Chang Lu, Yang-Bin Tsao, Yi-Min Chih, Weichao Chen, and S.

Chien. 2020. GrateTile: Efficient Sparse Tensor Tiling for CNN Processing. In

IEEE Workshop on Signal Processing Systems (SiPS). 1–6. https://doi.org/10.1109/

SiPS50750.2020.9195243

[38] Tim Mattson, David A. Bader, Jonathan W. Berry, Aydin Buluç, Jack J. Don-

garra, Christos Faloutsos, John Feo, John R. Gilbert, Joseph Gonzalez, Bruce

Hendrickson, Jeremy Kepner, Charles E. Leiserson, Andrew Lumsdaine, David A.

Padua, Stephen Poole, Steven P. Reinhardt, Mike Stonebraker, Steve Wallach,

and Andrew Yoo. 2013. Standards for Graph Algorithm Primitives. In IEEE High
Performance Extreme Computing Conference. IEEE, 1–2. https://doi.org/10.1109/

HPEC.2013.6670338

[39] Duane Merrill and Michael Garland. 2016. Merge-Based Sparse Matrix-Vector

Multiplication (SpMV) Using the CSR Storage Format. In Proceedings of the 21st
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
Article 43, 2 pages. https://doi.org/10.1145/2851141.2851190

[40] Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. 2019. PHI: Archi-

tectural Support for Synchronization-and Bandwidth-Efficient Commutative

Scatter Updates. In International Symposium on Microarchitecture (MICRO). ACM,

1009–1022. https://doi.org/10.1145/3352460.3358254

[41] Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and Aydın Buluç. 2019. Perfor-

mance optimization, modeling and analysis of sparse matrix-matrix products on

multi-core and many-core processors. Parallel Comput. 90, Article 102545 (Dec.
2019), 13 pages. https://doi.org/10.1016/j.parco.2019.102545

[42] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siying

Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw, Trevor Mudge, and

Ronald Dreslinski. 2018. OuterSPACE: An Outer Product Based Sparse Matrix

Multiplication Accelerator. In International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 724–736. https://doi.org/10.1109/hpca.2018.

00067

[43] Michael Pellauer, Yakun Sophia Shao, Jason Clemons, Neal Crago, Kartik Hegde,

Rangharajan Venkatesan, Stephen W. Keckler, Christopher W. Fletcher, and

Joel Emer. 2019. Buffets: An Efficient and Composable Storage Idiom for Ex-

plicit Decoupled Data Orchestration. In International Conference on Architec-
tural Support for Programming Languages and Operating Systems. ACM, 137–151.

https://doi.org/10.1145/3297858.3304025

[44] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srini-

vasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. 2020. SIGMA: A Sparse

and Irregular GEMM Accelerator with Flexible Interconnects for DNN Training.

In International Symposium on High Performance Computer Architecture (HPCA).

IEEE, 58–70. https://doi.org/10.1109/hpca47549.2020.00015

[45] Fazle Sadi, Joe Sweeney, Tze Meng Low, James C. Hoe, Larry Pileggi, and Franz

Franchetti. 2019. Efficient SpMV Operation for Large and Highly Sparse Matrices

using Scalable Multi-way Merge Parallelization. In International Symposium on
Microarchitecture (MICRO). ACM, 347–358. https://doi.org/10.1145/3352460.

3358330

[46] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and

George Karypis. 2017. FROSTT: The Formidable Repository of Open Sparse Tensors
and Tools. http://frostt.io/

[47] Edgar Solomonik, Maciej Besta, Flavio Vella, and Torsten Hoefler. 2017. Scaling

Betweenness Centrality using Communication-Efficient Sparse Matrix Multi-

plication. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. Article 47, 14 pages. https:

//doi.org/10.1145/3126908.3126971

[48] Edgar Solomonik and Torsten Hoefler. 2015. Sparse Tensor Algebra as a Parallel

Programming Model. CoRR abs/1512.00066 (2015). arXiv:1512.00066 http://arxiv.

org/abs/1512.00066

[49] Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru Zhang. 2020.

MatRaptor: A Sparse-Sparse Matrix Multiplication Accelerator Based on Row-

Wise Product. In International Symposium on Microarchitecture (MICRO). 766–780.
https://doi.org/10.1109/MICRO50266.2020.00068

[50] Nitish Srivastava, Hanchen Jin, Shaden Smith, Hongbo Rong, David Albonesi, and

Zhiru Zhang. 2020. Tensaurus: A Versatile Accelerator for Mixed Sparse-Dense

Tensor Computations. In International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 689–702. https://doi.org/10.1109/hpca47549.2020.

00062

[51] Markus Steinberger, Rhaleb Zayer, and Hans-Peter Seidel. 2017. Globally Homo-

geneous, Locally Adaptive Sparse Matrix-Vector Multiplication on the GPU. In

Proceedings of the International Conference on Supercomputing. Article 13, 11 pages.
https://doi.org/10.1145/3079079.3079086

[52] Michelle Mills Strout, Larry Carter, Jeanne Ferrante, and Barbara Kreaseck. 2004.

Sparse Tiling for Stationary Iterative Methods. Int. J. High Perform. Comput. Appl.
18, 1 (2004), 95–113. https://doi.org/10.1177/1094342004041294

[53] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. 2017. Efficient

Processing of Deep Neural Networks: A Tutorial and Survey. Proc. IEEE 105, 12

(Dec. 2017), 2295–2329. https://doi.org/10.1109/JPROC.2017.2761740

[54] Stijn Marinus van Dongen. 2000. Graph Clustering by Flow Simulation. Ph. D.
Dissertation. Center for Math and Computer Science (CWI), Utrecht University.

[55] Richard W. Vuduc and Hyun-Jin Moon. 2005. Fast Sparse Matrix-Vector Multipli-

cation by Exploiting Variable Block Structure. InHigh Performance Computing and
Communications (HPCC), Vol. 3726. 807–816. https://doi.org/10.1007/11557654_91

[56] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick,

and James Demmel. 2009. Optimization of Sparse Matrix-Vector Multiplication

on Emerging Multicore Platforms. Parallel Comput. 35, 3 (March 2009), 178–194.

https://doi.org/10.1016/j.parco.2008.12.006

[57] Yannan Nellie Wu, Joel S. Emer, and Vivienne Sze. 2019. Accelergy: An

Architecture-Level Energy Estimation Methodology for Accelerator Designs.

In Proceedings of the International Conference on Computer-Aided Design (ICCAD
2019), David Z. Pan (Ed.). ACM, 1–8. https://doi.org/10.1109/ICCAD45719.2019.

8942149

[58] Abdurrahman Yaşar, Muhammed Fatih Balin, Xiaojing An, Kaan Sancak, and

Ümit V. Çatalyürek. 2022. On Symmetric Rectilinear Partitioning. ACM Journal of
Experimental Algorithmics 27 (Aug. 2022), 1–26. https://doi.org/10.1145/3523750

[59] Carl Yang, Aydın Buluç, and John D. Owens. 2018. Design Principles for Sparse

Matrix Multiplication on the GPU. In Euro-Par 2018: Proceedings of the 24th
International European Conference on Parallel and Distributed Computing, Marco

Aldinucci, Luca Padovani, and Massimo Torquati (Eds.). 672–687. https://doi.

org/10.1007/978-3-319-96983-1_48

[60] Guowei Zhang, Nithya Attaluri, Joel S. Emer, and Daniel Sanchez. 2021. Gamma:

Leveraging Gustavson’s Algorithm to Accelerate Sparse Matrix Multiplication.

In Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS 2021). 687–701.
https://doi.org/10.1145/3445814.3446702

[61] Zhekai Zhang, Hanrui Wang, Song Han, and William J. Dally. 2020. SpArch:

Efficient Architecture for Sparse Matrix Multiplication. In International Sym-
posium on High Performance Computer Architecture (HPCA). IEEE, 261–274.
https://doi.org/10.1109/HPCA47549.2020.00030

Received 2022-10-20; accepted 2023-01-19

https://doi.org/10.1109/MICRO.2018.00080
https://doi.org/10.1145/3352460.3358275
https://doi.org/10.1109/isca.2018.00062
https://doi.org/10.1145/3293883.3295712
https://doi.org/10.1063/1.4798940
https://doi.org/10.1145/3133901
https://doi.org/10.1145/3133901
https://doi.org/10.1109/SC41405.2020.00091
http://snap.stanford.edu/data
https://doi.org/10.1109/SiPS50750.2020.9195243
https://doi.org/10.1109/SiPS50750.2020.9195243
https://doi.org/10.1109/HPEC.2013.6670338
https://doi.org/10.1109/HPEC.2013.6670338
https://doi.org/10.1145/2851141.2851190
https://doi.org/10.1145/3352460.3358254
https://doi.org/10.1016/j.parco.2019.102545
https://doi.org/10.1109/hpca.2018.00067
https://doi.org/10.1109/hpca.2018.00067
https://doi.org/10.1145/3297858.3304025
https://doi.org/10.1109/hpca47549.2020.00015
https://doi.org/10.1145/3352460.3358330
https://doi.org/10.1145/3352460.3358330
http://frostt.io/
https://doi.org/10.1145/3126908.3126971
https://doi.org/10.1145/3126908.3126971
https://arxiv.org/abs/1512.00066
http://arxiv.org/abs/1512.00066
http://arxiv.org/abs/1512.00066
https://doi.org/10.1109/MICRO50266.2020.00068
https://doi.org/10.1109/hpca47549.2020.00062
https://doi.org/10.1109/hpca47549.2020.00062
https://doi.org/10.1145/3079079.3079086
https://doi.org/10.1177/1094342004041294
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1007/11557654_91
https://doi.org/10.1016/j.parco.2008.12.006
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1145/3523750
https://doi.org/10.1007/978-3-319-96983-1_48
https://doi.org/10.1007/978-3-319-96983-1_48
https://doi.org/10.1145/3445814.3446702
https://doi.org/10.1109/HPCA47549.2020.00030

	Abstract
	1 Introduction
	2 Background and Terminology
	2.1 Tensors, Tensor Kernels and Einsums
	2.2 Compressed Representations
	2.3 Tiling Compressed Representations

	3 Dynamic Reflexive Tiling
	3.1 Trade-offs in Changing Tile Shape
	3.2 Reflexive Tiling Algorithm
	3.3 Example for matrix multiplication

	4 The Tile Extractor
	4.1 Micro Tile-Granular Tile Extraction
	4.2 Implementation
	4.3 Compressed Format Example

	5 Methodology
	5.1 Workloads, metrics and datasets
	5.2 Evaluation framework and baselines

	6 Evaluation
	6.1 Study 1: Main Results
	6.2 Study 2: Portability To Accelerators
	6.3 Study 3: Software Best-Case Analysis
	6.4 Bandwidth Scaling Study
	6.5 Extraction Overhead, Area, and Energy
	6.6 Design Space Exploration

	7 Related Work
	8 Conclusion
	Acknowledgments
	A Appendices
	A.1 SpMSpM Workloads

	References

